

Institute for European Environmental Policy

Carbon Dioxide Capture and Storage: Potential and Pitfalls

Jason Anderson, IEEP

28 May 2008 Heraus Seminar

www.ieep.eu

The 2 degree challenge

A limit to global warming of 2 degrees Celsius above preindustrial levels has been endorsed by the Council, Parliament and Commission, as well as many stakeholders

Source: Meinshausen, 2005

The 'portfolio of options'

CO₂ source

Power plant combusting fossil fuel or \sim biomass, with CO₂ captured through:

- Pre-combustion decarbonisation
- Post-combustion decarbonisation
- Oxyfuel combustion

Separated in industrial processes from natural gas or in hydrogen or ammonia production Transport

Pipeline (large volume – considered most likely)

Tanker truck (small volumes)

Ship (possibly for long-rage international or offshore transport)

Storage

In abandoned oil or gas wells

In operating oil or gas wells to enhance production

In deep saline aquifers

In coal seams

Overview of CO2 capture processes and systems

Source: IPCC special report

Examples

Using energy to save emissions...

Efficiency loss due to capture

Fuel gas processing and related impacts

CO₂ separation

Global storage capacities

More realistic assessments

Choices under economic pressure

Source: Van Vuuren, 2006

28 May 2008

CCS costs

- Capture: \$5 90 / tCO2 \$40-60 / tCO2 'typical' acid gas processing, hydrogen, ammonia
- Transport: \$0 20 / tCO2
 on site storage

depends on volume, distance, terrain

Storage: \$2 - 12 / tCO2

depends on location/type of formation

Future cost reduction potential: capture - 50%, others less

■ Capital cost ■ Cost Of fuel baseline ■ Additional capital cost ■ Cost of fuel for capture

Source: IEEP analysis of IPCC special report

Economic potential at low prices

Cumulatively: 220 - 2200 GtCO₂ CCS used

Including CCS in the portfolio decreases overall mitigation costs by 30%

There is no one model

IPCC AR4, 2007

CCS Directive Primes model

EU27		CO2 Ca	ptured (M	lt/year)	CO2 captured as % of CO2 from Power and Steam		Total Energy Cost as % of GDP				
	Scenarios	2020	2025	2030	2020	2025	2030	2020	2025	2030	1
1	Baseline	0.0	0.0	0.0	0.0	0.0	0.0	9.57	9.26	8.95	1
2	Base-CCS1	0.0	4.3	62.0	0.0	0.2	3.6	9.58	9.28	8.99	1
3	Base-CCS2	0.0	5.0	90.5	0.0	0.3	5.2	9.58	9.28	8.99	1
4	CVtar-G	53.3	142.2	490.7	4.0	10.1	32.5	9.80	9.55	9.46	
5	CVtar-A	27.2	150.5	483.3	2.2	11.1	32.8	10.19	9.94	9.75	
6	RVCVtar-G	7.2	33.3	219.2	0.6	2.7	175	9.88	9.68	9.55	
7	RVCVtar-A	7.0	19.7	160.7	0.6	1.7	13.2	10.14	9.93	9.75]
8	RVCVtar-G-CCS1	7.2	33.1	300.7	0.6	2.7	24.1	9.88	9.69	9.59	
9	RVCVtar-G-CCS2	7.2	52.1	424.3	0.6	4.2	32.7	9.90	9.70	9.63	
10	RVCVtar-A-CCS1	6.9	20.6	266.9	0.6	1.8	22.2	10.14	9.94	9.79	
11	RVCVtar-A-CCS2	6.9	26.5	391.3	0.6	2.2	31.0	10.15	9.95	9.81	
12	RVCVtar-A-CCS1R	37.2	118.1	326.2	3.2	10.0	26.9	10.15	9.96	9.79	
13	RVCVtar-A-CCS2R	75.0	176.5	517.1	6.2	14.4	39.5	10.17	9.99	9.82	
14	RVCVtar-A-CCS2N	0.0	3.5	272.6	0.0	0.3	22.7	10.15	9.94	9.80	
15	RVCVtar-A-CCS2Nuc	7.1	22.6	352.1	0.7	2.1	29.7	10.17	9.97	9.81	
16	RVCVtar-A-noCCS	0.0	0.0	0.0	0.0	0.0	0.0	10.15	9.96	10.07	
17	RVCVtar-A-subs	0.2	21.6	210.7	0.0	1.8	17.3	10.14	9.93	9.77	

Mitigation GDP loss with and without CCS

- Aggregate figures can be misleading:
 - Need to know where and when specific challenges arise, e.g. new coal capacity – lock-in.
- Technical potential is not the best indicator of potential
 - Political will
 - Powerful constituencies
 - Public acceptance
 - Financial considerations
- Because there is no hard and fast answer the most important thing to avoid is *failure to act*

Leakage pathways

Source: S. Haszeldine, U. Edinburgh

28 May 2008

Natural analogue

Graphic and photo: USGS

Humans (Healthy adults)	Below 3%	No adverse effects but increased breathing, mild headache and sweating
	4-5% for 'few minutes'	Headache, increased blood pressure and difficulty in breathing
	7-10% up to 1 hour	Headache, dizziness, sweating, rapid breathing and near or full unconsciousness
	15%+	Loss of consciousness in less than one minute. Narcosis, respiratory arrest, convulsions, coma and death
	30%	Death in few minutes
Terrestrial Invertebrates		
insect (Cryptolestes ferrugineus)	15%	Death after ~ 42 days
	100%	Death after ~2 days
soil invertibrates	20%	Majority of any one species have 'behavioural changes'
	11-50%	Lethal for 50% of species
Terrestrial Vertebrates	Rodents 2%	
	Gophers 4%	Observed in burrows and nests
	Birds 9%	
	Fish 1-6%	Significant stress
	Fish >2%	Can be lethal
Plants	>0.2%	Stimulation of C3 photosynthesis plants (includes temperate cereal crops such as wheat)
	>5%	Deleterious effects on plant health and yield.
	5-30%	Severe effects expected.
	>20%	Long-term exposure leads to dead zones with no macroscopic flora.
	>30%	Defined as a lethal concentration.
	20-90%	Trees killed at Mammoth Mountain, CA, USA, probably by suppression of root zone respiration via hypoxia
Fungi	15-20%	Significant inhibition of growth of spores for 2 types of fungi
-	30%	No measurable growth of spores
	50%	No germination of spores
Subsurface microbes	None known	Increased concentrations (from injection) are likely to have profound effects as aerobic organisms will be inhibited but anaerobic organisms eg Fe (III) reducers, S reducing reducers and methanogens will respond to rock/water/carbon dioxide interactions and are likely to increase in population size and activity

Trapping types over time

Baseline characterisation

Numerical monitoring

Source: S. Haszeldine, U. Edinburgh 28 May 2008

Onshore only Offshore only Onshore & Offshore Primary Secondary use use						te location/ migration	scale processes	age	ntification
							Fine	Leak	Quar
			3D/4D surface seismic						
			Time lapse 2D surface seismic						
			Multicomponent seismic						
Soismic	Acou	stic	Boomer / Sparker						
Seisinic	imagi	ng	High resolution acoustic imaging						
			Microseismic monitoring						
			4D cross-hole seismic						
	Well b	ased	4D VSP						
Sonar Bath	umotr		Sidescan sonar						
Sonar Dati	ymeu	У	Multi beam echo sounding						
Cravimatry			Time lapse surface gravimetry						
Gravinietry			Time lapse well gravimetry						
			Surface EM						
			Seabottom EM						
Electric /	Electr	o -	Cross-hole EM						
magn	etic		Permanent borehole EM						
Ū			Cross-hole ERT						
			ESP						
		' – 🧝 Downhole fluid chemistry							
	-luids	Down hole Spring	PH measurements						
_			Tracers						
ca		Marine	Seawater chemistry						
Ē			Bubble stream chemistry						
hei			Short closed path (NDIRs & IR						
oc	Se		Short open path (IR diode lasers)						
)ec	ISSI	mos	Long open path (IR diode lasers)						
0	ů	Ph	Eddy covariance						
Soil			Gas flux						
		gas	Gas concentrations						
Ecosystems			Ecosystems studies						
			Airborne hyperspectral imaging						
Remote s	sensir	ng	Satellite interferometry						
3			Airborne EM						
			Geophysical logs						
Othe	ers		Pressure / temperature		H				
			Tiltmeters						

ACCSEPT survey: Perceived need for CCS in own country (1), EU (2) and globally (3)

Probably necessary

Only necessary if

others falter

Definitely not necessary

Unsure

Prioritised stakeholder concerns

· · · · · · · · · · · · · · · · · · ·	R&D	Ind	Gov	NGO	Р
Dangerous levels of leakage for humans					
Impact on ecosystems					
CO2 Pipeline Safety					
Impact on drinking water					
Impacts on property values					
Mineral rights / landowner approvals			2 2		
Cost of Deployment		*	*		
Scale of Deployment					3
Importance of broader energy context in shaping attitudes					
Are efforts to communicate adequate					
Ability of CCS to reduce emissions dramatically in short term					
Diversion of efforts from renewable energy					
Possible competition with nuclear					
Impact of EOR on extending oil market				*	
Impact of CCS on extending/expanding coal market					
Full cycle impact of fossil fuel use					
Differential acceptability of different kinds of CCS					
Bridging or long-term?					
	Source	e: IEEP			

CCS deployment curve

28 May 2008

- Directive on CCS proposed by the Commission, under consideration by Parliament now
- Regulates approaches to risk assessment, licensing
- Includes CCS in emissions trading
- →Doesn't do anything about commitment to demonstration plants
- →Doesn't ensure CCS is part of a defined end to coal pollution

EU Emissions Trading Scheme

- The basic option already on the table
- Cost-effective instrument, if strong incentive given
- However, if EUA prices remain low:
 - Preference for low-cost abatement options
 - Innovation market failure
 - ETS unlikely to lead to CCS deployment
 - \rightarrow Need for complementary policies

Complementary policies

- Public financial support (most likely MS level)
 - Investment support
 - Feed-in subsidies
 - $-CO_2$ price guarantee
- Low-carbon portfolio standard with tradable certificates (most likely EU level)
- CCS obligation (EU level)

Our view...

- Don't allow CCS to be promoted as hype it should either contribute or get out of the way. The failure of CCS is entirely likely if not forced in; the failure of low carbon alternatives is entirely likely if CCS is not forced out – it is currently as much a delaying tactic as a solution.
- If it is to be an option you can't sit on the fence: make it prove itself by devoting public funding (which leverages private money).
- Subject demonstrations to defined timetables and goals.
- Create required emissions standards or mandatory CCS rather than leaving it to the ETS market alone – price uncertainty and future political will are too uncertain.
- A requirement will make alternatives to CCS even more attractive because the counterfactual probably isn't solar energy but coal pollution.

Contacts

London Office 28 Queen Anne's Gate London SW1H 9AB UK Tel: +44 (0)207 799 2244 Fax: +44 (0)207 799 2600

Brussels Office

55 Quai au Foin/Hooikaai B-1000 Brussels Belgium Tel: +32 (0) 2738 7482 Fax: +32 (0) 2732 4004

IEEP is a not-for-profit institute dedicated to the analysis, understanding and promotion of policies for a sustainable environment in Europe

Extras slides follow

Uncertainties in Risk Assessment

Benchmarking exercise where 7 organizations using own methods and tools made independent risk assessment of the same Chemical Installation.

Figure 2. Discrepancy in societal risk calculations (based on fictitious population data)

Variations in individual societal risk calculations (based on fictitious population data).

Variations in individual safety distance calculations: Maximum and minimum distances for the isorisk curve 10-5 yr-1.

Source: Det Norske Veritas (DNV)

Mineral Carbonation

Mineral Carbonation – the chemical fixation of CO_2 in minerals to form geologically stable mineral carbonates

 $(1)Mg_{2}SiO_{4} + 2CO_{2} \rightarrow 2MgCO_{3} + SiO_{2} - 209 \text{ kJ/mol}$ $(2)Mg_{3}Si_{2}O_{5}(OH)_{4} + 3CO_{2} \rightarrow 3MgCO_{3} + 2SiO_{2} + 2H_{2}O - 67 \text{ kJ/mol}$

Characteristics

- Thermodynamically favored
- Mimic natural weathering
- Slow reaction kinetics

Which is appropriate when?

	Demonstration 2010-2020		Up-scaling Com		mercialisation		
			2015-2030	2	025-204	0	
ETS (weak)		Yes		Yes		Yes	
ETS (strong)		Yes		Yes		Yes	
Investment support		Yes		No		No	
Feed-in subsidy		Yes		Yes		No	
CO ₂ price guarantee		Yes		Yes		No	
Portfolio + certificates		No		Yes		Yes	
Obligation		No		Yes		Yes	

	Effectiveness	Risk + cost burden	Consistency	Feasibility
ETS (low price)	-	0	+	+
ETS (high price)	+	+	+	+/-
Investment support	+	-	0	-
Feed-in subsidy	+	-	0	-
CO ₂ price guarantee	+	-	0	-
Portfolio + certificates	+	+	0/-	+/-
Obligation	+	+	0/-	+

Main message on support

- Current approach is to use the ETS as an incentive – IA shows that a strong price signal is the best across the board
- However, a weak price signal is not as effective as a mandatory requirement
- Question: do we run the risk of relying on the creation of a strong price signal?
- In either case, need to push early movement:
 ETS only post-2012
 - A future mandate runs the risk of industry doing insufficient development and forcing a push-back on the requirement later.

Oxyfuel pilot plant at Schwarze Pumpe

CCS modelled to reduce costs

IEA 2006

Shares of CO ₂ emission reductions in 2050 by contributing factor (%)										
Scenarios	Мар	Low Nuclear	Low Renewables	No CCS	Low Efficiency	TECH Plus				
Fossil fuel mix in power generation	5.1	4.6	5.2	5.9	6.7	5.3				
Fossil fuel generation efficiency	0.8	0.9	1.0	2.9	1.4	0.7				
Nuclear	6.0	1.9	6.8	10.3	7.3	7.2				
Hydropower	1.6	1.6	0.1	2.1	1.4	1.2				
Biomass power generation	1.7	1.8	0.3	2.6	2.1	1.5				
Other renewables power generation	6.1	6.6	4.5	11.3	7.2	7.2				
CCS power generation	12.4	14.3	14.3	0.0	17.9	11.7				
CCS coal-to-liquids	3.3	3.4	3.3	0.0	4.2	4.6				
CCS industry	4.6	4.7	4.7	0.0	5.5	3.9				
Fuel mix buildings and industry	7.7	7.5	7.4	5.5	9.6	7.3				
Increased use of biofuels in transport	5.6	5.8	5.7	6.4	6.0	6.2				
Hydrogen and fuel cells in transport	0.0	0.0	0.0	0.0	0.0	4.1				
End-use efficiency	45.2	46.9	46.6	53.1	30.7	39.2				
Total	100	100	100	100	100	100				

IEA Energy technology perspectives, 2006

No CCS, no nuclear

Greenpeace energy [R]evolution, 2007

Is CCS safe?

- Short answer: probably
 - Technically: likely to be well within industry capabilities to control leakage.
 - Main possible problem: management failures, poor decision making.
- Compared to what?
 - Current coal emissions already a killer
 - Power industry, natural gas transport and storage are good analogues
- How can we prove it?
 - Experience with CO₂ to date, natural analogues, natural gas
 - An element of uncertainty remains with storage
 - A barrier towards the public: communicating risk

Survey: financial incentives for CCS

28 May 2008

- To most stakeholders it is, although often as a second-best necessity
- Everyone is concerned about costs they must show signs of being manageable
- Risk perception is as yet not fully formed and needs to be carefully managed
- Projects on the ground may mobilise new interest groups