

AKE-DPG April 2009

Direktverstromung kohlenstoffhaltiger Energieträger

Simon Nürnberger¹, Rainer Bußar^{1,2}, Björn Franke¹ und <u>Ulrich Stimming^{1,2}</u>

¹ ZAE Bayern, Abteilung 1: Technik für Energiesysteme und Erneuerbare Energien, Walther-Meißner-Straße 6, 85748 Garching

> ² Technische Universität München, Physik Department E19, Grenzflächen und Energieumwandlung, James-Franck-Straße 1, 85748 Garching

Für die Mitarbeit der Abteilung 3 des ZAE Bayern in Erlangen bei der Materialentwicklung wird gedankt.

Gliederung

- Motivation und Vorteile von Direkt-Brennstoffzellen;
- Bisher realisierte Konzepte f
 ür Direktkarbon-Brennstoffzellen;
- Kohlenstoff-Elektrooxidation in einer SOFC;
- Zusammenfassung und Ausblick.

- Konventionelle Verbrennungskraftwerke
 - Durch Carnot-Wirkungsgrad begrenzt
 - In der Praxis erreichte elektrische Wirkungsgrade ca. 40 %

- Konventionelle Verbrennungskraftwerke
 - Durch Carnot-Wirkungsgrad begrenzt
 - In der Praxis erreichte elektrische Wirkungsgrade ca. 45 %
- Brennstoffzelle (BZ)
 - Direkte und effiziente Umwandlung von chemischer in elektrische Energie

- Direkt-Kohlenstoff-Brennstoffzelle (DCFC)
 - Direkte und effiziente Umwandlung der in Kohlenstoff gespeicherter chemischer Energie in Elektrizität,
 - Hoher thermodynamischer Wirkungsgrad,
 - In der Praxis erreichte elektrische Wirkungsgrade bis 80%,
 - CO₂entsteht an der Anode in vergleichsweise reiner Form,
 - Hohe Flexibilität bezüglich der Anlagengröße.

ZAE BAYERN

Hochtemperatur-Brennstoffzellen – Vorteile

- 1. Hohe elektrische Wirkungsgrade
 - ~ 50% @ < 1 MW, ~ 60% @ > 1 MW (e.g. Kombiprozess).
- 2. Verminderte Schadstoffemissionen
 - Kein SO_x oder NO_x ; verminderte CO_2 Emissionen.
- 3. Kraftwärme-Kopplungs Potential
 - Abwärme auf hohem Temperaturniveau (Heiz- und Kühlanwendungen).
- 4. Hohe Brennstoffflexibilität

Wasserstoff, Methanol/Ethanol, Biogas/Erdgas, langkettige Kohlenwasserstoffe (Diesel/Ottokraftstoff), <u>Kohlenstoff</u>

- 5. Größenflexibilität
 - Modularer Aufbau erlaubt hohe Größenflexibilität.

Motivation für eine Direktverstromung von Kohlenstoff

Aspekte der Anlagengröße und -flexibilität

- Wird Kohle vergast und in Gas- und Dampf-Kraftwerken umgesetzt, muss die Anlage im >100 MW Bereich liegen;
- DCFC bietet deutlich größere Flexibilität bei der Anlagengröße (wenige kW bis MW);
- Keine neuartige Brennstoffzellentechnologie notwendig → Verwendung existierender, jedoch modifizierter SOFC-Systeme oder Schmelzcarbonat Brennstoffzellen (MCFC-Systeme) möglich.

Motivation für eine Direktverstromung von Kohlenstoff

Aspekte der Brennstoffe

- Direkte Nutzung von Kohle als Brennstoff (eine Aufreinigung ist erforderlich);
- Hohe Verfügbarkeit an Kohle (~200 Jahre Reichweite bei gleich bleibender Förderung);
- Möglichkeit der Nutzung von karbonisierter Biomasse nach Pyrolyse bzw. hydrothermaler Karbonisierung, damit negative CO₂-Bilanz möglich;
- Auch hochkohlenstoffhaltiger Abfall kann als Brennstoff verwendet werden.

Physik Department

Realisierte Konzepte, Stand der Technik

1896 W. Jacques – Kohlenstoffstab als Anode in einer Kohlenstoff/Luft-Batterie

Tabelle 3: Übersicht über den Stand von DCFC - Konzepten

Entwickler	SRI International	LLNL	SARA	Clean Coal Energie	CellTech
Technisches Konzept	SOFC + flüssige Anode	Schmelzkarbonat (MCFC)	Kohlenstoffanode	SOFC + ,fluidized bed anode' *	SOFC + flüssige Anode (= LTA- SOFC)
Brennstoff	jeder kohlenstoff- haltiger Brennstoff	Kohlenstoff- Nano- pulver	Kohle, Biomasse	reiner Kohlenstoff	Kohlenstoff (Zinn als Redoxmediator)
Leistungsdichte (mW cm ⁻²)	120	80-200 Je nach Brennstoff	k.A.	k.A.	180 (H2) 120 (JP8/Diesel)
Ausnutzung des Brennstoffs	100	100	k.A.	k.A.	~60
Elektrischer Wirkungsgrad	>70% (abgeschätzt)	80%	70% (abgeschätzt)	k.A.	Gen 3: 30% mit H ₂ , CH ₄ Gen. 3.1 40%
Stand der Entwicklung	Vollzell-, Demonstrations- modul; 12 W Stack in Entwicklung	60 cm ² Vollzelle 5 Zellen Stack	Vollzelle	nur theoretische Überlegungen	50 W Demomodell in Entwicklung 3 W Ministack
Potentielle technische Probleme	Stabilität des Ionenleiters und Stromabnehmers	geringe Leistungsdichte, hohe Brennstoff- kosten, Größe, Elektrolyt korrosiv	begrenzte Lebensdauer, Elektrolyt reagiert mit Oxidations- produkten; Nachfüllprobleme	geringe Stromdichte, Probleme mit realen Brenn- stoffen	Leistungsdichte, Verunreinigungen, Zirkulation des Metallbads

D. X. Cao, Y. Sun, G. L. Wang, *Journal of Power Sources* **2007**, *167*, 250.;B. Heydorn, S. Crouch-baker, *The Fuel Cell Review* **2006**.* US Patent 5376469

- Zelltests mit Größen von 3-60 cm²
- ca. 30 C-Materialien getestet (50-125 mW cm^{-2})
- η=80% @ 0,8V (0,2 W cm⁻²)
- Einwochenbetrieb mit period. Befüllung
- Experimentierzellen von 3 W auf stabelbare 75-150 W Zellen (5 Zeller mit 750 cm^2)

Anodenreaktion:

TECHNISCHE JNIVERSITÄT MÜNCHEN

Kathodenreaktion:

Gesamtreaktion:

$$C + 2CO_3^{2-} \rightarrow 3CO_2 + 4e^{-1}$$

 $O_2 + 2CO_2 + 4e^- \rightarrow 2CO_3^{2-}$

 $O_2 + C \rightarrow CO_2$

ZAE BAYERN

Source: John Cooper, LLNL.

Lawrence Livermore

```
National Laboratory (LLNL)
```

Quellen: THE FUEL CELL REVIEW Dec/Jan 2006 J. F. Cooper, Fuel Cell Seminar, Palm Springs, 2005

Quelle: Thomas Tao, Direct Carbonaceous Fuel Direct Carbonaceous Fuel Conversion Including JP8 In The Gen 3.1 Liquid Tin Anode SOFC; Fuel Cell Seminar 2007.

Brennstoff an der Anode ist Sn, dass ,chemisch' wieder regeneriert (reduziert) wird; System kann als Batterie und Brennstoffzelle betrieben werden.

Realisierte Konzepte und Stand der Technik: SOFC

Hohe Brennstoffflexibilität; u.A. Kohle, Ruße und schwere Bitumenmasse, Plastabfälle und Biomasse können direkt elektrifiziert werden.

Quelle: Lawrence H. Dubois, SRI International Menlo Park, CA

Biomasse-Umsetzung in einer Brennstoffzelle:

- Umsetzung karbonisierter Biomasse;
- CO₂ alleiniges Abgas an der Anode;
- bei Seqestrierung von CO_2 ist eine negative CO_2 Bilanz möglich.

Entwicklungsbedarf

Für Direktkohlenstoff-Brennstofzellen DCFC ist es erforderlich:

- Die Hochtemperatur-Brennstoffzellen Technologien (SOFCs, MCFCs) gezielt weiterzuentwickeln;
- An ,natürliche' Brennstoffe wie Kohle und insbesondere karbonisierte Biomasse zu adaptieren;
- Die Leistungsdichte zu optimieren (konkurrenzf\u00e4hig >200-300 mW/cm²);
- Zuführung des Brennstoffs zu optimieren (kontinuierlicher Betrieb);
- CO_2 -Sequestrierung an DCFCs anzupassen.

Experimentelle Ergebnisse

- Die Direkt-Kohlenstoff-Brennstoffzelle DCFC
- Versuchsaufbau
- Messungen/Ergebnisse
- Zusammenfassung und Ausblick

ZAE BAYERN

Messungen mit Wasserstoff und Kohlenstoffmonoxid

Zellen ohne Anodenschicht (elektrischer Kontakt mit Ni-Netz)

- ZAE BAYERN
- Referenzmessungen mit Wasserstoff und Kohlenstoffmonoxid
- Brennstoffe
- Untersuchung der Kinetik der Boudouard-Reaktion
- Verschiedene Anodenschichten
- Einfluss verschiedener Anodenschichten und Brennstoffe auf die Kinetik der elektrochemischen Oxidation von Kohlenstoff

Brennstoffe

GFG50 (graphitisch)

GFG 50; a2 2; x300

Korngröße: 40-60 µm BET-Oberfläche: 21 m²/g

Korngröße: 5-20 µm BET-Oberfläche: 258 m²/g

- ZAE BAYERN
- Referenzmessungen mit Wasserstoff und Kohlenstoffmonoxid
- Brennstoffe
- Boudouard-Gleichgewicht
- Verschiedene Anodenschichten
- Einfluss verschiedener Anodenschichten und Brennstoffe auf die Kinetik der elektrochemischen Oxidation von Kohlenstoff

Boudouard-Gleichgewicht

- ZAE BAYERN
- Referenzmessungen mit Wasserstoff und Kohlenstoffmonoxid
- Brennstoffe
- Untersuchung der Kinetik der Boudouard-Reaktion
- Verschiedene Anodenschichten
- Einfluss verschiedener Anodenschichten und Brennstoffe auf die Kinetik der elektrochemischen Oxidation von Kohlenstoff

Physik Department

ZAE BAYERN

Modifizierte Anodenschichten

Physik Department

Modifizierte Anodenschichten

ZAE BAYERN CuO/CGO-Anodenschichten

ZAE BAYERN

- Referenzmessungen mit Wasserstoff und Kohlenstoffmonoxid
- Brennstoffe
- Untersuchung der Kinetik der Boudouard-Reaktion
- Verschiedene Anodenschichten
- Einfluss verschiedener Anodenschichten und Brennstoffe auf die Kinetik der elektrochemischen Oxidation von Kohlenstoff

Zellen ohne Anodenbeschichtung

Nm / M 400 400 Spannung ΔU / mV 1000°C 1000°C 50°C 950°C 900°C 900°C 50 100 15 Stromdichte j / mA/cm² Stromdichte j / mA/cm²

GFG50

ZAE BAYERN

Zellen ohne Anodenbeschichtung

ZAE BAYERN

ZAE BAYERN

Zusammenfassung

- Verifikation der direkten elektrochemischen Oxidation von Kohlenstoff;
- An Zellen ohne Anodenbeschichtung wurden bis zu 100mA/cm² (40mW/cm²) erreicht.
- Reaktivität amorphen Kohlenstoffs gegenüber graphitischem Material ist höher;
- Nachweis einer elektrokatalytischen Aktivität von CGO;
- Nachweis von CO im Abgasstrom;
- Bei NiO-Anodenschichten bei hohen Temperaturen: Vergasung des Kohlenstoffs zu CO, Stromdichten bis 160 mA/cm² (100mW/cm²).

Zusammenfassung

• Einsatz einer Salzschmelze als elektrochemischem Mediator;

- Praktische Anwendung: Toleranz des Elektrolyten/Anode gegenüber Verunreinigungen, Querleitfähigkeit der Anodenschicht;
- Absenken der Betriebstemperatur, um Einfluss der Boudouard-Reaktion zu minimieren;
- CGO als Festelektrolyten einsetzen → Betriebstemperatur kann gesenkt werden, CGO elektrokatalytisch aktiv.

Vielen Dank für Ihr Interesse!