Fundamental Research on Renewable Energy Systems

at the interface between engineering + mathematics + physics

Martin Greiner, Aarhus University greiner@eng.au.dk

- (1) 100% Renewable Energy Systems
- (2) Complex Networks

(3) Wind-farm Modeling + Optimization

G Andresen	(PostDoc)
R Rodriguez	(PhD)
M Dahl	(Master)
B Tranberg	(Master)
E Eriksen	(Master)
S Kozarcanin	(Master)
M Therkildsen	(Master)

S Becker	(FIAS PhD)
T Jensen	(DTU PhD)
J Herp	(SDU PhD)

U Poulsen	(Assist Prof)
M Rasmussen	(PostDoc)
D Heide	(PhD)
A Søndergaard	
T Zeyer	(Master)
A Thomsen	(Master)
B Sairanen	(Master)

Design of a highly renewable pan-European energy system

"Mehr als die Vergangenheit interessiert mich die Zukunft, denn in ihr gedenke ich zu leben."

(Albert Einstein)

Design of a highly renewable pan-European energy system

More + more + ... renewables: what is the end of the story?

Anticipate the future!
Think backwards: 2050 →2020!

Let the weather decide!

Let the weather decide!

$$G_n^W(t) + G_n^S(t) + B_n(t) + \sum_{ngb(n)} F_{\to n} + S_n^{-1}$$

$$= L_n(t) + C_n(t) + \sum_{ngb(n)} F_{n\to} + S_n^{+1}$$

$$\langle G_n^W + G_n^S \rangle = \gamma_n \langle L_n \rangle$$

$$\langle G_n^W \rangle = \alpha_n \gamma_n \langle L_n \rangle$$

$$\langle G_n^W \rangle = \alpha_n \gamma_n \langle L_n \rangle$$
 $\langle G_n^S \rangle = (1 - \alpha_n) \gamma_n \langle L_n \rangle$

actio = reactio

$$G_n^W(t) + G_n^S(t) - L_n(t) = C_n(t) - B_n(t) + \sum_{ngb(n)} (F_{n\to} - F_{\to n}) + (S_n^+ - S_n^-)$$

Let the weather decide!

$$G_n^{RES}(t) = G_n^W(t) + G_n^S(t)$$

 $L_n(t)$

Renewable Energy Atlas

2000 - 2007: 1h, 45x45km²

1980 - 2014: 1h, 30x30km²

historical load (detrended)

$$\langle G_n^W + G_n^S \rangle = \gamma_n \langle L_n \rangle$$

$$\langle G_n^W \rangle = \alpha_n \gamma_n \langle L_n \rangle$$

$$\langle G_n^W \rangle = \alpha_n \gamma_n \langle L_n \rangle \left| \langle G_n^S \rangle = (1 - \alpha_n) \gamma_n \langle L_n \rangle \right|$$

actio = reactio

$$G_n^W(t) + G_n^S(t) - L_n(t) = C_n(t) - B_n(t) + \sum_{ngb(n)} (F_{n \to} - F_{\to n}) + (S_n^+ - S_n^-)$$

Technical + economical design of a highly renewable pan-European energy system

How much ...

... wind energy?

... solar PV energy?

... backup energy + power?

... transmission?

... storage?

and what about

... transition 2050 \rightarrow 2020?

... future markets

... coupling of energy sectors?

How much backup? How much wind + solar power?

Mismatch distribution (Germany)

$$\Delta_n(t) = G_n^{RES}(t) - L_n(t) = C_n(t) - B_n(t)$$

$$\left\langle G_n^{RES} \right\rangle = \left\langle L_n \right\rangle$$

$$C_n(t) = \max(\Delta(t), 0)$$

$$B_n(t) = -\min(\Delta(t), 0)$$

$$\alpha_n = \frac{\left\langle G_n^W \right\rangle}{\left\langle G_n^{RES} \right\rangle}$$

Mismatch distribution (Germany)

$$\Delta_n(t) = G_n^{RES}(t) - L_n(t)$$

$$\left\langle G_n^{RES} \right\rangle = \left\langle L_n \right\rangle$$

$$B_n(t) = -\min(\Delta(t), 0)$$

$$C_n(t) = \max(\Delta(t), 0)$$

AARHUS
UNIVERSITY
DEPARTMENT OF ENGINEERING

BACKUP ENERGIES of EU countries (zero transmission)

$$\langle B_n \rangle \approx 0.24$$

Mismatch distribution (Europe)

$$G_n^{RES}(t) - L_n(t) = C_n(t) - B_n(t) + \sum_{ngb(n)} \left(F_{n \to} - F_{\to n} \right)$$

$$\Delta_{EU}(t) = \sum_{n} G_{n}^{RES}(t) - \sum_{n} L_{n}(t) = G_{EU}^{RES}(t) - L_{EU}(t)$$

$$= \sum_{n} \left(C_{n}(t) - B_{n}(t) \right) + \sum_{n} \sum_{\substack{n \text{ } ngb(n) \\ =0}} \left(F_{n} - F_{\rightarrow n} \right) = C_{EU}(t) - B_{EU}(t)$$

Mismatch distribution: Germany vs. Europe

Mismatch without / with Transmission

BACKUP ENERGIES of EU countries (with/without transmission)

$$\alpha_{EU} \approx 0.80$$

$$\langle B_n \rangle \approx 0.24$$

$$\langle B_{EU} \rangle \approx 0.15$$

Mismatch distribution: Germany vs. Europe

Mismatch without / with Transmission

BACKUP CAPACITY of EU countries (without/with transmission)

wind and solar power capacities

annual consumption (2009)

= 3360 TWh

70% wind power generation

- = 875 GW installed capacity
- = 175.000 x 5 MW turbines
- = 4350 x 200 MW wind farms
- $\approx 115000 \text{ km}^2$

30% solar PV power generation

- = 550 GW installed capacity
- $\approx 3500 7500 \text{ km}^2$

How much transmission?

transmission calculation without transmission

$$\gamma = 1$$

$$\alpha \approx 0.7$$

minimum backup energy at optimal wind / solar mix

$$B_{EU} = 0.15$$

VS.

$$\sum_{n} B_n = 0.24$$

transmission calculation without transmission

The MAXIMUM BENEFIT OF TRANSMISSION quantifies how much balancing/surplus can be reduced by sharing local surplus wind and solar power in an unconstrained pan-European transmission network.

How much transmission?

Backup vs. Transmission

Who pays for the transmission capacity?

$$\left| \left(\sum_{l} T_{l}^{2050} \right) \frac{\left\langle L_{n} \right\rangle}{\sum_{m} \left\langle L_{m} \right\rangle} \right|$$

$$\left. \sum_{l(n)} \frac{T_l^{2050}}{2} \right|$$

Who pays for the transmission capacity?

export flow tracing

import flow tracing

Who pays for the transmission capacity?

$$\left(\sum_{l} T_{l}^{2050}\right) \frac{\left\langle L_{n}\right\rangle}{\sum_{m} \left\langle L_{m}\right\rangle}$$

$$\sum_{l(n)} \frac{T_l^{2050}}{2}$$

Who pays for the transmission capacity?

Levelized Cost of SYSTEM Energy

Levelized Cost of SYSTEM Energy

beyond EU: world-wide grid

beyond EU: world-wide grid

so far: backup + transmission

now: what about storage?

How much storage? @ 100% penetration in EU

$$G_n^W(t) + G_n^S(t) - L_n(t) = \sum_{ngb(n)} (F_{n\rightarrow} - F_{\rightarrow n}) + (S_n^+ - S_n^-)$$

$$\Delta_{EU}(t) = G_{EU}^{RES}(t) - L_{EU}(t)$$

$$S(t) - S(t-1) =$$

$$= \begin{cases} \eta_{\text{in}} \Delta(t) & (\Delta > 0) \\ \eta_{\text{out}}^{-1} \Delta(t) & (\Delta < 0) \end{cases}$$

How much storage? @ 100% penetration in EU

Seasonal optimal mix

- = 60% wind power
- + 40% solar power

How much storage? @ 100% penetration in EU

$$C_S = 10\% \langle L \rangle_{\text{annual}}$$

= 340 TWh

NOT POSSIBLE: POSS

Pumped Hydro,

Compressed Air

POSSIBLE:

H2 storage

25 TWh = 0.008 av.y.l.

6h "battery" storage

2.2 TWh = 0.0007 av.y.l

Storage Singularity

Temporal correlations on the synoptic time scale cause the extremely enhanced need for storage energy capacity.

Beyond a penetration of $\gamma > 60\%$ a 6h storage (load flexibility, smart grid, v2g) is no longer sufficient!

What about synergies: balancing + storage?

"hydro/bio" balancing

- (150 TWh)
- + 6h "battery" storage
- + seasonal H2 storage

(2.2 TWh, η=1.0) (25 TWh, η=0.6)

6h "battery" storage + seasonal H2 storage

+ "hydro/bio" balancing (150 TWh)

(2.2 TWh, η=1.0) (25 TWh, η=0.6) (150 TWh)

$$\gamma = 1, \ \alpha = 0.8$$
:

$$\langle B(t) \rangle_{EU} = 15\% \langle L \rangle_{\text{annual}}$$

= 510 TWh

6h "battery" storage

- + seasonal H2 storage
- + "hydro/bio" balancing (150 TWh)

(2.2 TWh, η=1.0) (25 TWh, η=0.6) (150 TWh)

6h "battery" storage + seasonal H2 storage + "hydro/bio" balancing

(2.2 TWh, η=1.0) (25 TWh, η=0.6) (150 TWh)

$2015 \leftrightarrow 2050$

Transition 0% → 100% renewables Case: Denmark (without storage)

$$G_n^{RES}(t) - L_n(t) = C_n(t) - B_n(t)$$

Excess generation:

$$G_n^W(t) + G_n^S(t) - L_n(t) = C_n(t) - B_n(t) + (S_n^+ - S_n^-)$$

Pan-European Transmission 2014 → 2050

Pan-European Transmission 2014 → 2050

Denmark 2014 → 2050: Import / Export opportunities

Germany 2014 → 2050: Import / Export opportunities

OUTLOOK

Fundamental Research on Renewable Energy Systems at the interface between engineering + mathematics + physics

storage phase transition,
renormalisation scaling of power flows,
spatio-temporal flow pattern analysis,
flow tracing,
optimal heterogenity,
self-organizing power flows.

CONSENSYS

100% = 100 + X%

COMPLEX NETWORKS OF SMART ENERGY SYSTEMS

wind + solar + hydro + bio + + backup + transmission + storage, electricity + heating + transportation

DESIGN OF FUTURE ENERGY MARKETS

OPTIMAL TRANSITION 2050 → 2020

Thank you!

Martin Greiner (Aarhus University): greiner@eng.au.dk

ARTMENT OF ENGINEERING

- **D Heide et.al.:** Seasonable optimal mix of wind and solar power in a future, highly renewable Europe, **Renewable Energy 35 (2010) 2483-2489**.
- **D Heide et.al.:** Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation, **Renewable Energy 36 (2011) 2515-2523**.
- **MG Rasmussen et.al.:** Storage and balancing synergies in a fully or highly renewable pan-European power system, **Energy Policy 51 (2012) 642-651**.
- RA Rodriguez et.al.: Transmission needs across a fully renewable European power system, Renewable Energy 63 (2014) 467-476.
- **S Becker et.al.:** Transmission grid extensions during the build-up of a fully renewable pan-European electricity supply, **Energy 64 (2014) 404-418**.
- **TV Jensen et.al.:** Emergence of a phase transition for the required amount of storage in highly renewable electricity systems, **EPJ ST on "Resilient power power grids and extreme events" (2014)**.
- **S Becker et.al.:** Features of a fully renewable US electricity system optimized mixes of wind and solar PV and transmission grid extensions, **Energy 72 (2014) 443-458**.
- **GB Andresen et.al.:** The potential for arbitrage of wind and solar surplus power in Denmark, **Energy (2014)**.
- **RA Rodriguez et.al.:** Cost-optimal design of a simplified, highly renewable pan-European electricity system, **Energy (2014) submitted**.
- **RA Rodriguez et.al.:** Selfish vs. cooperative exports across a fully renewable pan-European transmission network, **Energy, Sustainability & Society (2014) submitted**.
- GB Andresen et.al.: Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis, Energy (2014) submitted.