



#### Perspektiven von kristallinen Siliziumschichten auf Glassubstrat: Auf dem Weg zur Waferqualität Bernd Rech

 D. Amkreutz, J. Haschke, F. Ruske, S. Steffens, L. Korte, S. Gall, Silicon-Photovoltaics R. Schlatmann, O. Gabriel, S. Calnan, S. Ring, B. Stannowski PVcomB C. Becker, V. Preidel, Young Investigator Group Nano-SIPPE J.-H. Zollondz, A. Heidelberg MASDAR PV GmbH

Thanks to: E. Rudigier-Voigt (SCHOTT AG), D. Hauschild (LIMO GmbH) U. Blöck, A. Schnegg, and many more colleagues @ HZB

AKE der Deutschen Physikalischen Gesellschaft - Bad Honnef 2014





- Introduction&Status PV
- Amorphous&Microcrystalline Si (brief)
  - Technology Transfer
  - BIPV & large scale implementation

## Large grained poly-Si on glass

- Liquid phase crystallisation a new horizon
- Material properties
- Solar cells & perspectives
- Conclusions&Outlook









#### **Helmholtz-Centre Berlin**





#### **Science with Photons**





BESSY II 3rd Generation Photon Source



- Operational since 1998
- Energy Range from THz to Hard-X-Ray
- Dedicated to VUV and Soft-X-Ray
- Full Polarization Control
- **Topping-Up** Mode since October 2012



## HZB in the Programme EMR





**Advanced Analytics especially by** 

- MAX-PLANCK-GESELLSCHAFT
- the "Energy Material In-Situ Laboratory" EMIL
  - World-wide unique research infrastructure at BESSY II
    - Photovoltaic Systems
    - Catalytic Systems
  - together with Max-Planck-Association
  - Begin of Operation: 2016

Head of Project: K. Lips



## Solar Energy Research











## **Potential of Solar Energy**

## T<sub>surface</sub>: 6000 K

#### Solar energy (continental)



taken from http://space-station-shuttle.blogspot.com/search/label/Sun for illustration purpose, the blue ball is the size of the earth !

Wind energy (200 x GPEC)

Biomass (20 x GPEC)

Geothermal energy (10 x GPEC)

Ocean and wave energy (2 x GPEC)

Hydro energy (1 x GPEC)

Global primary energy consumption

Source: F. Nitsch, DLR

## **Renewables in the IEA 2DS Scenario**





IEA - Energy Technology Perspectives 2012





#### Cumulative PV installation in Germany Global installation approx. 100 GW end of 2012



#### PV costs in Germany and Feed In Tariff 2006 - 2012



#### Solar PV system cost and feed-in tariff, large solar plants, Germany 2006-12



## **PV** in Berlin today – residential home

HZB Helmholtz Zentrum Berlin

**11.5 KW**<sub>p</sub> c-Si: grid connection 11/2012<br/>
"black design":  $\eta = 15 \%$ Expected production / y: 10.000 kWh<br/>
2013: 10.000 kWh (average y)<br/>
2014: 10.500 -11.000 (sunny y)Electricity generation cost: 18 c/kWh

|              | costs in € | costs in €/Wp | costs/kWh |  |
|--------------|------------|---------------|-----------|--|
| Modules      | 11500.00   | 1.00          | 0.10      |  |
| Inverter     | 2500.00    | 0.22          | 0.02      |  |
| Installation | 7500.00    | 0.65          | 0.06      |  |
| total        | 21500.00   | 1.87          | 0.18      |  |

Note: installations in 2014 show significantly lower electricity generation costs









Note: Calculation done for 1000 sunshine hours. An efficiency of 20 % and 1000 sunshine hours is equivalent to a 10 % system in a region with 2000 sunshine hours.

B R, SS Schmidt, R Schlatmann Transition to Renewable Energy Systems, 283-306

## **Share of Different PV Technologies**

![](_page_12_Picture_1.jpeg)

![](_page_12_Figure_2.jpeg)

89 % Wafer based Si 11 % Thin film

Photon Europe GmbH (2012)

50 years manufacturing experience

- monocrystalline
- multicrystalline

#### New cell concepts on industrial scale

- rear contacts
- improved texturing and passivation

Laboratory cell efficiency: 23% various approaches (world record lab cell: 25.6 % )

module efficiency range:

- •13 ~ 20%
- •18 ~ 22% (longer term)

![](_page_13_Figure_11.jpeg)

Nutricrystalline silicon produced via the Vertical Gradient Freeze method at SIMT Source: SIMTEC/ FHG ISE

![](_page_13_Picture_13.jpeg)

![](_page_13_Picture_14.jpeg)

source: ECN

![](_page_13_Picture_16.jpeg)

### **PV Status and growth potential**

![](_page_14_Picture_1.jpeg)

#### Unique features of photovoltaics:

- Direct energy conversion
- No movable parts
- Versatile and scalable

#### **Expected developments:**

- futher continous cost reductions
- pillar of world energy supply
- Multi-billion dollar market

![](_page_14_Figure_10.jpeg)

Source IRENA 2013

![](_page_14_Figure_12.jpeg)

in Germany by PV

![](_page_14_Figure_13.jpeg)

![](_page_15_Figure_0.jpeg)

![](_page_16_Picture_0.jpeg)

#### **Record Solar Cells**

![](_page_16_Picture_2.jpeg)

#### **Best Research-Cell Efficiencies**

![](_page_16_Figure_4.jpeg)

![](_page_17_Picture_0.jpeg)

#### Amorphous&Microcrystalline Si (brief)

- Tandem cells
- Technology Transfer

Outline

BIPV & large scale implementation

#### Large grained poly-Si on glass

- Liquid phase crystallisation a new horizon
- Material properties
- Solar cells & perspectives
- Conclusions&Outlook

![](_page_17_Picture_10.jpeg)

![](_page_17_Picture_11.jpeg)

![](_page_17_Picture_12.jpeg)

![](_page_17_Picture_13.jpeg)

### a-Si:H/µc-Si:H Tandem Cells

![](_page_18_Picture_1.jpeg)

![](_page_18_Figure_2.jpeg)

A. Lambertz et al. SolMat 119 (2013).

#### pioneered by J. Meier/ A. Shah et al. first modules by Kaneka (K. Yamamoto et al.)

Technology status in A. Shah et al. SolMat 119 (2013).

## PVcomB technology transfer lines

![](_page_19_Figure_1.jpeg)

nholt-

![](_page_20_Figure_0.jpeg)

Helmholtz Zentrum Berlin

![](_page_20_Figure_1.jpeg)

S. Neubert et al., PIP (2013) – ZnO integration

![](_page_21_Figure_0.jpeg)

## **Power Plants**

#### MASDAR & PV HZB A MASDAR COMPANY

D Helmholtz Zentrum Berlin

- 15 MW<sub>p</sub>
- 29,826 a-Si/μc-Si modules à 5.7 m<sup>2</sup>
- 10 % of Mauritania's grid capacity
- Largest PV installation in Africa
- Advantage of a-Si/µ-Si technology in desert climate due to T<sub>coeff</sub>

![](_page_22_Picture_7.jpeg)

# Building Integration MASDAR & PV

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

![](_page_23_Picture_3.jpeg)

![](_page_23_Picture_4.jpeg)

![](_page_23_Picture_5.jpeg)

However, MasdarPV is facing out

## Outline

#### Introduction

- a-Si:H&µc-Si:H technology (brief)
  - Tandem cells
  - Technology Transfer
  - BIPV & large scale implementation

## Large grained poly-Si on glass

- Liquid phase crystallisation a new horizon
- Material properties
- Solar cells & perspectives

![](_page_24_Picture_10.jpeg)

![](_page_24_Picture_11.jpeg)

![](_page_24_Picture_12.jpeg)

![](_page_24_Picture_13.jpeg)

![](_page_24_Picture_14.jpeg)

![](_page_24_Picture_15.jpeg)

## Thin-film Si on glass – status&challenge

![](_page_25_Figure_1.jpeg)

mid term

long term

today

a-Si:H: 10.1\*%TEL Solar

a-Si:H/µc-Si:H: 12.3\* % Kaneka

Single junction cells (1cm<sup>2</sup>)

µc-Si: 10.7\*% EPFL/IMT

Triple junction cells (1cm<sup>2</sup>)

(a-Si:H/µc-Si:H/µc-Si:H)

13.4\*% LG Electronics

Tandem cells (1cm<sup>2</sup>)

13.6 % UniSolar

SPC-poly Si: 10.4\*% csg solar (94cm<sup>2</sup>)

see review articles in special issue Solar Energy Materials and Solar Cells 119 (2013) ed. by A. Shah and A.N. Tiwari

### Fast Si deposition & fast crystallisation HZB Helmholtz electron beam heater crystallisation speed Si 1 cm/s electron beam Si **CW diode laser** crucible Deposition rate up to 1µm/min film thickness 10-30 µm feasible MO High Vacuum (not UHV) Lissotschenko Mikrooptik $(10^{-7} \text{ to } 10^{-6} \text{ mbar})$ No toxic/explosive gases

![](_page_27_Picture_0.jpeg)

#### Alternatives for Si precursors at HZB

![](_page_27_Picture_2.jpeg)

- PECVD + Annealing (for H outdiffusion )

![](_page_27_Picture_4.jpeg)

#### Wet chemical deposition

![](_page_27_Figure_6.jpeg)

T. Sontheimer et al. Adv. Materials Interfaces, (2014)

![](_page_27_Picture_8.jpeg)

## Electron Beam Crystallization on glass

![](_page_28_Picture_1.jpeg)

![](_page_28_Picture_2.jpeg)

![](_page_28_Picture_3.jpeg)

5 cm

![](_page_28_Picture_4.jpeg)

![](_page_28_Figure_5.jpeg)

Technische Universität Hamburg-Harburg

## Liquid Phase Crystallization on Glass

HZB Helmholtz Zentrum Berlin

![](_page_29_Picture_2.jpeg)

Grain size / EFG like up to cm in length & several 100 µm in width

**Typical Thickness 10 µm** 

Dislocation densities: very low in large grains (comparable to cz-silicon)

![](_page_29_Picture_6.jpeg)

![](_page_29_Picture_7.jpeg)

![](_page_29_Picture_8.jpeg)

Technische Universität Hamburg-Harburg

![](_page_30_Picture_1.jpeg)

#### **Process window on SiO<sub>2</sub> and SiC<sub>x</sub>** 1,30 Ш 1,25delamination 1,20 longitudinal grains region II normalized energy 1,15 Ш 1,10 1,05 1,00 0,95columnar grains 0,90-50 100 150 200 250 300 350 400 0 SiO<sub>2</sub> cappinglayer thickness (nm)

D. Amkreutz et al., SolMat Vol 123 (2014)

#### **EBC crystallization on glass**

![](_page_31_Picture_1.jpeg)

![](_page_31_Figure_2.jpeg)

## **Poly-Si on glass – towards wafer quality**

![](_page_32_Picture_1.jpeg)

![](_page_32_Figure_2.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_34_Picture_0.jpeg)

![](_page_34_Picture_1.jpeg)

![](_page_34_Figure_2.jpeg)

## Special features

- Superstrate configuration
- High blue response / good passivatior of the buried interface
- Glass/SiO/SiN/SiO/Si AR coating
- Textured silicon surface
- Laser crystallisation

![](_page_34_Picture_9.jpeg)

J. Dore et al. IEEE 2013 S. Varlamov et al. SolMat 119 (2013).

![](_page_34_Picture_11.jpeg)

Glass

## Latest progress towards wafer quality

![](_page_35_Picture_1.jpeg)

40  $\mu m$  crystallised Si on glass

Multi-crystalline Si wafer

![](_page_35_Picture_4.jpeg)

![](_page_36_Picture_0.jpeg)

![](_page_36_Picture_2.jpeg)

![](_page_36_Figure_3.jpeg)

Jan Haschke et al. SOLMAT 2014 Latest results in Daniel Amkreutz et al. IEEE-J-PV, 2014

![](_page_37_Picture_0.jpeg)

![](_page_37_Picture_1.jpeg)

![](_page_37_Figure_2.jpeg)

Jan Haschke et al. SOLMAT 2014, D. Amkreutz et al. IEEE JPV 2014, acc.

Solar cell performance

![](_page_38_Picture_1.jpeg)

![](_page_38_Figure_2.jpeg)

|                                            | $V_{\rm OC} [{\rm mV}]$ | $j_{\rm SC} [{\rm mA}{\rm cm}^{-2}]$ | FF [%] | η [%] | pFF [%] |
|--------------------------------------------|-------------------------|--------------------------------------|--------|-------|---------|
| S-device <sup>1,i</sup>                    | 656                     | 21.9                                 | 50.0   | 7.2   | 80.2    |
| A-device (w/ TippEx & ARF) <sup>2,i</sup>  | 632                     | 27.3                                 | 64.8   | 11.2  | 75.8    |
| A-device (w/ TippEx & ARF) <sup>2,ls</sup> | 629                     | 27.5                                 | 66.2   | 11.5  | 77.0    |

Jan Haschke et al. SOLMAT 2014

Latest efficiency: 11,8 % Amkreutz, IEEE

### First light soaking data

![](_page_39_Picture_1.jpeg)

![](_page_39_Figure_2.jpeg)

- Within error bars no degradation
- Slight improvement in FF
- Performance data can only by simulated by assuming high quality surface passivation and low defect densities in the Si absorber

Still plenty of room for Improvement:

- high pseudo FF
- high internal QE

# Efficiencies above 15 % seem in reach?!

Jan Haschke et al. SOLMAT 2014

# Poor light trapping in most kerfless thin c-Si cells

![](_page_40_Picture_1.jpeg)

![](_page_40_Figure_2.jpeg)

[1] M. Ernst, R. Brendel, IEEE Journal of Photovoltaics (99), 723 (2013). <u>http://dx.doi.org/10.1109/JPHOTOV.2013.2247094</u>
[2] M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Progress in Photovoltaics **21**, 1 (2012). <u>http://dx.doi.org/10.1002/pip.2352</u>

- Lab results for A > 1 cm<sup>2</sup>
- Most cells: Less current than single pass photogeneration would allow

10th Workshop on the Future Direction of PV Rolf Brendel, www.isfh.de

![](_page_40_Picture_8.jpeg)

![](_page_41_Picture_0.jpeg)

## Going – 3 D in thin film Si

![](_page_41_Picture_2.jpeg)

Very high light absorption

- Additional freedom for optimisation
- Removal of poor quality material

"cheap is possible"

![](_page_41_Picture_7.jpeg)

![](_page_41_Picture_8.jpeg)

![](_page_41_Figure_9.jpeg)

New Institute "Nanoarchitectures Silke Christiansen

![](_page_41_Picture_11.jpeg)

![](_page_41_Picture_12.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_42_Figure_1.jpeg)

3 µm

In cooperation with S. Christiansen HZB&MPI Erlangen S.W. Schmitt et al. Nanoletters 2012

![](_page_43_Figure_0.jpeg)

## Liquid phase crystallized textured Si films

![](_page_44_Picture_1.jpeg)

#### Double side textured Si architectures by electron-beam crystallization

![](_page_44_Picture_3.jpeg)

T > 1414°C (Si melting point)

\*\*V. Preidel et al., Proc. SPIE 8823, 882307 (2013)

![](_page_45_Picture_1.jpeg)

#### Absorption enhancement in liquid phase crystallized Si films

![](_page_45_Figure_3.jpeg)

- Absorption enhancement stable up to 60° angle of incidence
- Optical potential for  $t_{Si} = 10 \ \mu m$ :  $J_{sc,max} = 38.2 \ mA/cm^2$  (double side texture)

#### The challenge: carrier extraction

![](_page_46_Picture_1.jpeg)

#### **Poly-Si on SiC barrier**

#### **Poly-Si on SiO<sub>2</sub>**

![](_page_46_Figure_4.jpeg)

\*\*V. Preidel et al., Proc. SPIE 8823, 882307 (2013)

#### **Double-side textured Si thin-film solar cell**

![](_page_47_Picture_1.jpeg)

Challenge: optimise buried interface with respect to:

- Film adhesion/grain size

mholtz

**Zentrum Berlin** 

- and surface passivation

#### Average solar cell parameters (7 cells)

|          | <i>V<sub>oc</sub></i> [mV] | J <sub>sc</sub> [mA/cm <sup>2</sup> ] | <i>FF</i> [%] |
|----------|----------------------------|---------------------------------------|---------------|
| textured | 551                        | 20.0                                  | 67            |
| planar   | 554                        | 21.1                                  | 68            |

V. Preidel et al., Proc. SPIE 8823, Thin Film Solar Technology V, 882307 (2013)

![](_page_48_Picture_0.jpeg)

![](_page_48_Picture_1.jpeg)

#### Advantages of thin film silicon

- Unlimited raw material availability & low energy consumption
- Unique products & applications
- Thin-film silicon technology is a key for for wafer technology ("HIT- approach")

#### Challenge or Drawback?

Defects & tails in a-Si:H and μc-Si:H limit bulk quality

#### **Opportunity**

- Large grained liquid phase crystallised Si on glass a new player
  - material properties are approaching wafer quality (>650 mV)
  - high-rate deposition for silicon precursors (prior to crystallisation)
  - alternative processes for silicon deposition feasible (e.g. via liquids)
  - back contact design and module concept required

![](_page_48_Picture_14.jpeg)

strong efforts in research & development still needed!

![](_page_49_Picture_1.jpeg)

 Solar energy will become a (the) major energy source in the future. The transformation of the energy system is one of the key global challenges!

 PV has proven that it is an Energy and not a Niche Technology

- strong market penetration is needed on a global scale
- system integration is a key

 PV has emerged as a major global industry facing strong competition

- R&D challenge & opportunity:
  - cheaper
    - more efficient !
      - new appliations

- storable

![](_page_50_Picture_0.jpeg)

![](_page_50_Picture_1.jpeg)

D Helmholtz Zentrum Berlin

# Thank you for your attention.

![](_page_50_Figure_3.jpeg)

![](_page_50_Picture_4.jpeg)

This work was supported by the Federal Ministry of Education (BMBF) and the state government of Berlin (SENBWF) in the framework of the program "Spitzenforschung und Innovation in den Neuen Ländern" (grant no. 03IS2151) and by the BMBF and the Federal Ministry for Environment, Nature Conservation and Nuclear Safety (BMU) in the framework of the program "Innovationsallianz Fotovoltaik" (grant no. 0325317C).