

Die Inbetriebnahme von Wendelstein 7-X: der Beitrag des Stellarators zur Fusionsforschung

Robert Wolf und das W7-X Team*)

robert.wolf@ipp.mpg.de

*) siehe Autorenliste Bosch et al. Nucl. Fusion 53 (2013) 126001

- Kernfusion und magnetischer Einschluss
 - > Noch ein paar ergänzende Bemerkungen
- Der Stellarator
 - Stellarator-Optimierung
- Wendelstein 7-X
 - Design & Aufbau
 - Inbetriebnahme und erstes Plasma
 - Ausblick
- HELIAS Kraftwerkskonzept

Übersicht

- Kernfusion und magnetischer Einschluss
 - > Noch ein paar ergänzende Bemerkungen
- Der Stellarator

Stellarator-Optimierung

- Wendelstein 7-X
 - Design & Aufbau
 - Inbetriebnahme und erstes Plasma
 - > Ausblick
- HELIAS Kraftwerkskonzept

Magnetischer Einschluss

Tokamak (2D)

Stellarator (3D)

Großer Teil des Magnetfelds stammt von Plasmastrom (Transformatorprinzip)

Magnetfeld hauptsächlich von externen Spulen erzeugt

Magnetischer Einschluss

Tokamak (2D)

Weiter entwickelt aber gepulst; stationärer Betrieb wirft Effizienzfrage auf

ITER ist ein Tokamak

Erstmalig (kontrollierte) Energieerzeugung durch Fusion

Stellarator (3D)

Vorteilhafte Eigenschaften für ein Kraftwerk (intrinsisch stationär)

W7-X ist ein Stellarator

Nachweis, dass Plasmaeigenschaften grundsätzliche Anforderungen für ein Kraftwerk erfüllen (kein Tritium)

Fusionsreaktionen

Plasmastabilität

$$\beta = \frac{p}{B^2/2\mu_0} \le 5\%$$

Aus technischen Gründen $B \sim 5T$ (Supraleitung, mechanische Kräfte)

$$p \leq 5 bar$$

Daraus folgt mit optimaler Temperatur (D-T-Reaktion) ~ $10 \ keV$

$$n \sim 10^{20} m^{-3}$$

Aus Leistungsbilanz folgt Tripelprodukt (D-T fusion)

$$nT\tau_E > 3 \cdot 10^{21} keV m^{-3}s$$

Mit *n* und *T* erhält man (Maß für Wärmeisolation)

 $\tau_E > 3s$

 $Q = P_{fusion} / P_{heating} \sim 30$ und $\tau_E \sim 3 s$ $P_{thermal} = P_{fusion} \sim 3 GW$ $P_{electric} \sim 1 GW$

Plasmastabilität

$$\beta = \frac{p}{B^2/2\mu_0} \le 5\%$$

Aus technischen Gründen $B \sim 5T$ (Supraleitung, mechanische Kräfte)

$$p \leq 5 bar$$

Daraus folgt mit optimaler Temperatur (D-T-Reaktion) ~ $10 \ keV$

$$n \sim 10^{20} m^{-3}$$

Aus Leistungsbilanz folgt Tripelprodukt (D-T fusion)

$$nT\tau_E > 3 \cdot 10^{21} keV m^{-3}s$$

Mit *n* und *T* erhält man (Maß für Wärmeisolation)

 $\tau_E > 3s$

ErreichtT > 10 keV $n > 10^{20} \text{ m}^{-3}$ $\tau_E \sim 1 \text{ sec}$ $\times 10$

Aufbau eines Fusionskraftwerks

"Advanced fuels"

 $D + {}^{3}He \rightarrow {}^{4}He + p + 18.4 \text{ MeV}$

 $(D + T \rightarrow {}^{4}He + n + 17.6 \text{ MeV})$

<u>1. Problem</u>

Um niedrigeres < σ v> zu kompensieren – Faktor 100 – müsste Druck Faktor 10 höher sein

Wegen $\beta = p / B^2/2\mu_0$ müsste β Faktor 10 oder *B* Faktor ~3 höher sein

2. Problem

Neutron aus D-T-Reaktion trägt 4/5 der Energie und deponiert diese im Blanketvolumen (wechselwirkt nicht mit dem Plasma), muss also nicht durch Oberfläche eines Wärmetauschers vom Plasma in ein Kühlmittel transportiert werden (max. Wärmeflüsse bei D-T-Fusion ~10 MW/m²)

<u>3. Problem (bei D, ³He)</u>

Woher kommt das ³He?

Ein magnetisch eingeschlossenes Fusionsplasma benötigt ...

- ... guten Einschluss (thermische Isolation, hinreichend großes τ_E) des Hochtemperaturplasmas (10 – 20 keV) durch das Magnetfeld
- ... hinreichend mäßigen Einschluss der Verunreinigungen (He-Asche)
- ... guten Einschluss der schnellen Ionen (α Teilchen bei 3.5 MeV) durch das Magnetfeld
- ... Stabilität des Plasmas bei endlichem Druck (Plasma- β):

$$P_f \sim n^2 < \sigma v > \sim p^2 < \sigma v > /T^2 \sim p^2 \sim \beta^2 B^4$$

- ... Wärme und Teilchenabfuhr
- ... ein Blanket für das Erbrüten von Tritium aus Lithium

Übersicht

- Kernfusion und magnetischer Einschluss
 - > Noch ein paar ergänzende Bemerkungen

• Der Stellarator

Stellarator-Optimierung

- Wendelstein 7-X
 - Design & Aufbau
 - Inbetriebnahme und erstes Plasma
 - > Ausblick
- HELIAS Kraftwerkskonzept

Intrinsisch stationär

- Höhere Effizienz denkbar

• Keine stromgetriebenen Instabilitäten

- "Weiche" Stabilitätstgrenzen

Keine Disruptionen

- Einfacherer Auslegung dem Komponenten im Plasmagefäß

• Sehr hohe Plasmadichte möglich

- Betrieb am optimaler Temperatur für D-T denkbar (10 – 20 keV)

Nachteile des Stellarators

• 3D Magnetfeldanordnung

- Im Allgemeinen schlechter Einschluss des thermischen Plasmas
- Im Allgemeinen schlechter Einschluss der schnellen Ionen
- Tendenz Verunreinigungen anzusammeln
- Komplexere Anordnung der Komponenten im Plasmagefäß (Divertor, Blanket)
- Komplexere Spulenanordnung

Stellarator-Optimierung

Entwicklung Plasmaszenario

Ingenieur-Technik

IPP

Figur-8 Stellarator PPPL, Princeton, USA

Lyman Spitzer, 1953 Rotational transform: $\iota/2\pi = 0.5$

IPP

Heliotron

- keine Toroidalfeldspulen

Large Helical Device (LHD, Japan)

IPP

IPP

• Kernfusion und magnetischer Einschluss

> Noch ein paar ergänzende Bemerkungen

• Der Stellarator

Stellarator-Optimierung

- Wendelstein 7-X
 - Design & Aufbau
 - Inbetriebnahme und erstes Plasma
 - > Ausblick
- HELIAS Kraftwerkskonzept

Stellarator-Optimierung

- 1. Geschlossene Flussflächen / geringe Störfelder
- 2. Gleichgewichts-Eigenschaften bei endlichem β (5%)
- 3. MHD Stabilität bei endlichem β (5%)
- 4. Reduzierter stoßbedingter Transport (thermisches Plasma)
- 5. Einschluss der α -Teilchen (schnelle Ionen)
- 6. Kompatibilität von Magnetfeld und Divertor (Energie und Teilchenabfuhr)
- 7. Geringe Plasmaströme —
- 8. Baubare modulare Spulen

Spezielle Eigenschaft von W7-X: Plasma und Magnetfeld soweit wie möglich entkoppelt

9. Reduktion des turbulenten Transports

Ergebnis der Stellarator-Optimierung

Wendelstein 7-X Spulenanordnung

- Optimierung erforderte Hochleistungscomputer
- Design und Bau erfordert moderne Computertechnologie
 (3D CAD, FEM Berechnungen, präzise Metrologie)

Einschluss des thermischen Plasmas

- Problem ist 3D Anordnung des Magnetfelds (Abwesenheit toroidaler Symmtrie) und die daraus folgende starke Modulation der Magnetfeldstärke entlang der Magnetfeldlinien
- Daraus folgt, dass der der stoßbedingte Transport (binäre Coulomb-Stöße) deutlich höher ist als in Tokamaks

$$\chi_e \propto \frac{\epsilon_{eff}^{3/2} T^{7/2}}{n R_o^2 B_0^2}$$

- Optimierung versucht effektiven Rippel, ε_{eff} , zu minimieren (Einführung von Quasisymmetrien)

Einschluss des thermischen Plasmas

- Problem ist 3D Anordnung des Magnetfelds (Abwesenheit toroidaler Symmtrie) und die daraus folgende starke Modulation der Magnetfeldstärke entlang der Magnetfeldlinien
- Daraus folgt, dass der der stoßbedingte Transport (binäre Coulomb-Stöße) deutlich höher ist als in Tokamaks

$$\chi_e \propto \frac{\epsilon_{eff}^{3/2} T^{7/2}}{n R_o^2 B_0^2}$$

- Optimierung versucht effektiven Rippel, \mathcal{E}_{eff} , zu minimieren (Einführung von Quasisymmetrien)

nicht-optimiert

drift-optimiert

Courtesy J. Proll

Divertor (Energie- und Teilchenabfuhr)

Spezielle Magnetfeldkonfiguration beruht auf resonantem Effekt: Bildung magnetischer Inseln bei $\iota/2\pi = 1$

Während der erste Betriebsphase ...

... begrenzen zunächst nur Limiter das Plasma; Divertor in einem späteren Ausbauschritt vorgesehen.

... begrenzen zunächst nur Limiter das Plasma; Divertor in einem späteren Ausbauschritt vorgesehen.

IPP

Übersicht

- Kernfusion und magnetischer Einschluss
 - > Noch ein paar ergänzende Bemerkungen
- Der Stellarator

Stellarator-Optimierung

- Wendelstein 7-X
 - Design & Aufbau
 - Inbetriebnahme und erstes Plasma
 - > Ausblick
- HELIAS Kraftwerkskonzept

Design von Wendelstein 7-X

Technische Parameter Großer Radius: 5.5 m Plasma Radius: 0.53 m Plasmavolumen: 30 m³ Plasmaoberfläche: 110 m² Magnetfeld (on axis): $\leq 3T$ Magnetfeldenergie: 620 MJ Heizleistung: 10 - 30 MW Pulslänge: ≤ 30 min Höhe: 5.5 m Durchmesser: 16 m Gesamtmasse: 725 t Kalte Masse: 425 t

Design von Wendelstein 7-X

Montage in 3 Minuten

Im Plasmagefäß (2015)

Übersicht

- Kernfusion und magnetischer Einschluss
 - > Noch ein paar ergänzende Bemerkungen
- Der Stellarator

Stellarator-Optimierung

- Wendelstein 7-X
 - Design & Aufbau
 - Inbetriebnahme und erstes Plasma
 - > Ausblick
- HELIAS Kraftwerkskonzept

Commissioning (April 2014 – August 2015)

Abpumpen des Kryovakuums Volumen ~ 380 m³ Oberfläche ~ 1100 m² (× 100)

- Abkühlen
 - Spulen, Spulengehäuse, Tragstruktur, Stromzuführungen, Kälteschilde
- Abpumpen des Plasmagefäßes
 Ausheizen bei 150°C
- Inbetriebnahme der supraleitenden Spulen und der Quench-Detektion
- Hochfahren des Magnetfeldes bis 2.5 T

Nicht-planare (modulare) Spulen 12 kA

Planare Spulen 10 kA

Technische Inbetriebnahme (April 2014 – August 2015)

- Abpumpen des Kryovakuums
 Volumen ~ 380 m³
 Oberfläche ~ 1100 m² (× 100)
- Abkühlen
 - Spulen, Spulengehäuse, Tragstruktur, Stromzuführungen, Kälteschilde
- Abpumpen des Plasmagefäßes
 Ausheizen bei 150°C
- Inbetriebnahme der supraleitenden Spulen und der Quench-Detektion
- Hochfahren des Magnetfeldes bis 2.5 T

Nicht-planare (modulare) Spulen 12 kA

Planare Spulen 10 kA

10⁻⁷ mbar

Technische Inbetriebnahme (April 2014 – August 2015)

- Abpumpen des Kryovakuums
 Volumen ~ 380 m³
 Oberfläche ~ 1100 m² (× 100)
- Abkühlen
 - Spulen, Spulengehäuse, Tragstruktur, Stromzuführungen, Kälteschilde
- Abpumpen des Plasmagefäßes
 Ausheizen bei 150°C
- Inbetriebnahme der supraleitenden Spulen und der Quench-Detektion
- Hochfahren des Magnetfeldes bis 2.5 T

Nicht-planare (modulare) Spulen 12 kA

Planare Spulen 10 kA

Abkühlung

Thermal shrinking of coil structure results in inward movement of cryo-feet by several cm

Abkühlung

Technische Inbetriebnahme (April 2014 – August 2015)

- Abpumpen des Kryovakuums
 Volumen ~ 380 m³
 Oberfläche ~ 1100 m² (× 100)
- Abkühlen
 - Spulen, Spulengehäuse, Tragstruktur, Stromzuführungen, Kälteschilde
- Abpumpen des Plasmagefäßes
 Ausheizen bei 150°C
- Inbetriebnahme der supraleitenden Spulen und der Quench-Detektion
- Hochfahren des Magnetfeldes bis 2.5 T

Nicht-planare (modulare) Spulen 12 kA

Planare Spulen 10 kA

Technische Inbetriebnahme (April 2014 – August 2015)

- Abpumpen des Kryovakuums
 Volumen ~ 380 m³
 Oberfläche ~ 1100 m² (× 100)
- Abkühlen
 - Spulen, Spulengehäuse, Tragstruktur, Stromzuführungen, Kälteschilde
- Abpumpen des Plasmagefäßes
 Ausheizen bei 150°C
- Inbetriebnahme der supraleitenden Spulen und der Quench-Detektion
- Hochfahren des Magnetfeldes bis 2.5 T

Nicht-planare (modulare) Spulen 12 kA

Planare Spulen 10 kA

2.5 T

Messung der magnetischen Flußflächen

Messung der magnetischen Flußflächen

Messung der magnetischen Flußflächen

B=0.4T, B=1.9T, B=2.5T

Plasmaheizung (MW Mikrowellenröhren)

Universität Stuttgart

IPP

Plasmaheizung (MW Mikrowellenröhren)

Universität Stuttgart

IPP

Erster Plasmabetrieb: 9.12.2015 – 10.3.2016

Heliumplasma Dauer ~ 100ms Erreichte Parameter $T_e \approx 3 \text{ keV}$ $T_i \approx 0.5 \text{ keV}$ $n_e \approx 2 \times 10^{19} \text{ m}^{-3}$

Das Plasma kann sehr dynamisch sein

Das Plasma kann sehr dynamisch sein

Bisher erreichte Plasmaparameter

Bisher erreichte Plasmaparameter

Übersicht

- Kernfusion und magnetischer Einschluss
 - > Noch ein paar ergänzende Bemerkungen
- Der Stellarator

Stellarator-Optimierung

- Wendelstein 7-X
 - Design & Aufbau
 - Inbetriebnahme und erstes Plasma
 - Ausblick
- HELIAS Kraftwerkskonzept

Weitere Entwicklung von W7-X

2015 / 2016 5 MW 4 MJ 6 s

Inertial gekühlter Kohlenstoff -Limiter

Stahlwand

Inertial gekühlter Kohlenstoff -Divertor

Stahlwand

Stationär gekühlter Kohlenstoff-Divertor - **10 MW/m²** -

Stahlwand

Erhöhung der Heizleistung

Wolframauskleidung

Übersicht

- Kernfusion und magnetischer Einschluss
 - > Noch ein paar ergänzende Bemerkungen
- Der Stellarator
 - Stellarator-Optimierung
- Wendelstein 7-X
 - Design & Aufbau
 - Inbetriebnahme und erstes Plasma
 - > Ausblick
- HELIAS Kraftwerkskonzept

HELical Advanced Stellarator (HELIAS)

Extrapolation von W7-X zu einem Fusionskraftwerk

Anforderungen / Parameter

- Mittleres Feld auf der Achse
 5 6 T
 (max. Feld an den Spulen 10 12 T)
- Größe der Spulen und Magnetfeld ähnlich zu ITER (Verwendung der ITER Spulentechnologie)
- Genügend Platz für das Blanket (~1.3 m zw. Plasma und Spulen)
- <β> = 4 5 % (W7-X Wert!)
- Fusionsleistung ~ 3GW
- Vorteil des großen Aspektverhältnisses: Reduzierter Neutronenfluss durch die Wand (Durchschnitt 1 MW/m², Maximum 1.6 MW/m²)

HELical Advanced Stellarator (HELIAS)

Größe bestimmt durch Einschluss und Blanket

 \rightarrow Zentrale Aufgabe von W7-X

Courtesy A. Häußler

IPP

EU Fusion Roadmap

"HELIAS-ITER"

Untersuchung eines brennenden Fusionsplasmas in einem Stellarator

Q = 10 $P_{\alpha} = 2 P_{Heizung}$

Keine Elektrische Leistung

"Einfache" Magnettechnologie (NbTi wie bei W7-X)

Kein Brutblanket

Courtesy F. Warmer

Zusammenfassung

Grundsätzliche Vorteile des Stellarators

- Intrinsisch stationär
- > "Weiche" Betriebsgrenzen (deutlich geringerer Aufwand der Plasmakontrolle)

Die zentrale Aufgabe von W7-X ist nachzuweisen, dass der Stellarator die grundsätzlichen Voraussetzungen für die Weiterentwicklung zu einem Fusionskraftwerk besitzt

- Wichtige Technologieentwicklungen (Spulenanordnung, Plasmaheizung, ...)
- Einschluss
- Energie- und Teilchenabfuhr
- Stationärer Betrieb eines Hochleistungsplasmas

Komplementär zu der Entwicklung des Tokamaks und den Aufgaben von ITER

- Erstes brennendes Fusionsplasma
- Erstmalige Erprobung von Fusionsblankets
- Betrieb einer nuklearen Fusionsanlage