

CO₂-Neutral Fuels

Adelbert Goede

Waldo Bongers, Martijn Graswinckel, Erik Langereis and Richard van de Sanden

DPG AK Energie, Bad Honnef, 20-21 October 2016, Germany

CO₂ Neutral fuels: What are they?

Hydrocarbons synthesised from water and air

- powered by Renewable Electricity
- CO₂ recirculated after use

Characterised by high energy density and existing infrastructure

Why CO₂ Neutral Fuels?

% renewables EU

- UNFCCC Paris 2015: CO₂ emission curbed by 80%-95% in 2050 vs. 1990
- Transport target EU-RED 2050:
 - 60% CO₂ emission reduction
 - Aviation 40% RE by 2050 (~2% of global CO_2 emission)

5-10% 10-20% 20-309

30-40%

50-609

- Transport makes up ~25% EU primary energy consumption
- → Batteries and Hydrogen emission free, but
 - → low volumetric energy density (hence mobility range limit)
- → Bio Fuels
 - → limited by Fuel vs. Food/Flora trilemma (jet fuel alone 5M barrels/day kerosene)

Aimed at phasing out Fossil and Nuclear and replace by Renewables

- Goal 80% electricity from Renewables in 2050
- Presently: 30% RE, 45GW installed wind power
- 30% RE on average: sunny and windy day 90% RE (8 May 2016). Cloudy and Calm: fossil coal, lignite and gas scrambled to cover demand
- Result: Dynamic grid control problem and CO₂ emissions up
- Objectives: clean, affordable, reliable energy supply not met
- Subsidised through guaranteed 20 yr electricity price (20B€/yr)
- Reform now drafted: Auction on generating capacity
- Needed: System Approach of generation, transmission, distribution to customers consistently managed
- Includes Energy Storage: BMBF Kopernikus Programme P2X

Carbon neutral fuel cycle: P2X – CCU

Graves et al., Ren. Sustain. Energy Rev. 15, 1, (2011)

Point source capture of fossil CO_2 \rightarrow not climate neutral, emission delayed

Power-to-X X = gas or liquid fuel or chemicals

Direct air capture of CO_2 \rightarrow climate neutral fuel cycle

P2X + CCU CCU: carbon capture and utilisation

P2X is most critical part both technically and economically

<u>Technology benchmark: costs of H₂</u> - Electrolysis >6 €/kg H₂ (fossil fuel <1 €/kg H₂) - CO₂ capture: point source 40 €/tonne, direct air 400 €/tonne

Direct air capture of CO₂

Klaus Lackner Tree captures 1 tonnes CO_2/day . Wet-dry cycle epoxy. To supply wind farm with CO_2 to be split by P2X, an approximately equally sized Lackner wood is needed.

First commercial CO_2 air capturing plant, Hinwil (CH), capacity 900 ton CO_2 /yr, swept area 6x12m² amine granules

Coupling Electricity, Gas and Oil infrastructure

Surplus renewable electricity expected 2050:

Germany 110-148 TWh, France 44-91 TWh, The Netherlands 30-55 TWh Energy Storage capacity NL gas net 552TWh

Renewable energy: intermittency, mismatch supply and demand

Energy storage, transport, distribution

Splitting H₂O and/or CO₂ by electrolysis

- Alkaline electrolyte (100 yrs large scale, mature technology)
 - Power density low (< 0.5W/cm²)
 - Hydrogen output pressure low (< 30bar)
 - Safety (caustic electrolyte)
- **PEM** (polymer electrolyte membrane), pre-commercial
 - Power density $\sim 1W/cm^2$
 - Rapid dynamic response
 - Degradation membrane
 - Catalyst material Pt, Ir (Scarce)
 - MW unit (Siemens)
- **SOEC** (solid-oxide electrolyser cell)
 - High power density, energy efficiency, output pressure
 - High Temperature operation (800°C, pressure 50-100 bar)
 - Co-electrolysis H₂O and CO₂
 - Degradation under high current density operation
 - Upscaling from kW range hampered

SOEC Co-Electrolysis at DTU

- External DC voltage pumps O²⁻ ions from porous cathode (Ni/YSZ)
- through dense solid **electrolyte** (YSZ = Yttrium Stabilised Zirconia)
- to porous anode (La_{1-x}Sr_xMnO₃/YSZ) at high temperature (800 °C)

Electrolysis is a surface process happening at the nm interface between electrode, electrolyte and catalyst a 3-phase boundary phenomenon not understood

John Irvine et. al. Nature Energy 1, p.1-23 (2016)

Fuel Cell mode

- a. H₂ absorption and dissociation on Ni surface to form H⁺ migrating to site for water formation
- b. Migration of O²⁻ or OH⁻ along electrolyte and Ni surface to form water
- c. Water formation at electrolyte surface and electron transport through the electrolyte
- Role of impurities (glassy Silicate) at the 3PB to block the water formation reaction

SCIENCE FOR FUTURE ENERGY

Mission: Basic scientific research into Fusion Energy and Solar Fuels, Based on in house high-quality technical infrastructure, collaboration with Academia, National Research Organisations and Industry, building a national community in energy research.

Relocated mid 2015 University Campus Eindhoven

Development time

Why plasma for CO₂ conversion?

Characteristics of CO₂ plasmolysis

Ease conditions for CO₂ splitting by channelling energy in molecular vibration to break chemical bond, not to heat the gas (non-equilibrium)

- Energy efficiency comparable to Electrolysis (~60% demonstrated)
- High gas flow and power flow density (45W/cm²)
- Fast dynamic response (intermittent power supply)
- No scarce materials employed (Pt catalyst in PEM)

University of Stuttgart Germany

IGVP: 30 kW @ 915 MHz

DPG AK Energie, Bad Honnef, 20-21 October 2016, Germany by Adelbert Goede DIFFER

Out of equilibrium $T_{vib} > T_0$ chemistry

Chemical reaction scheme

 $CO_2 \rightarrow CO + O$ (Δ*H*=5.5 eV) followed by reuse energetic **O** radical $CO_2 + O \rightarrow CO + O_2$ (Δ*H*=0.3 eV) Net $CO_2 \rightarrow CO + \frac{1}{2}O_2$ (Δ*H*=2.9 eV)

Efficiency to be increased by

Concentration of electron energy on vibrational excitation of CO₂ in asymmetric stretch mode

 $\eta = CF/W = a H/E_v$

Arrhenius/Fridman:

Activation energy reduced by vibration energy $k = A \exp (aE_v - E_a)/kT$

CO and O₂ production as function RF Power

Optical Spectroscopy

- CO third positives, fourth positives, Angstrom and Triplet identified.
- CO line intensity increases linear with RF power and gas pressure

DPG AK Energie, Bad Honnef, 20-21 October 2016, Germany by Adelbert Goede DIFFER

Experimental Results

CO production as function Gas flow

DPG AK Energie, Bad Honnef, 20-21 October 2016, Germany by Adelbert Goede DIFFER

Experimental Results

Energy efficiency of CO₂ plasma conversion

O₂ separation from CO (similar sized)

- MIEC mixed ion electron conductive membrane (pressure driven) BSCF (Ba_{0.5} Sr_{0.5} Co_{0.8} Fe_{0.2} O_{3-d}) has been shown to produce an O₂ flux of 60-80 ml/cm²per min.
- Electro chemical Oxygen pump (Voltage driven) YSZ (Yttrium stabilized Zirconia).

DPG AK Energie, Bad Honnef, 20-21 October 2016, Germany by Adelbert Goede DIFFER

Separation of CO, O₂, CO₂ mixture

YSZ Oxygen selective membrane to separate O_2 from CO, CO₂ mixture Hairpin shaped membranes fitted into SS assembly

From H₂O and CO₂ to sustainable hydrocarbons

reaction enthalpies calculated for gaseous products at standard conditions

DPG AK Energie, Bad Honnef, 20-21 October 2016, Germany by Adelbert Goede DIFFER

10 year Kopernikus Program Power-to-X

Objectives high CO_2 reduction with max CO_2 valorisation, decentralisation, upscaling, public acceptance and export

Yr 1 to 3

- 6 Research Clusters; FZ Jülich, RWTH Aachen, Dechema together with Associated Partners (KIT Energy Lab 2.0)
- Electrolysis, Catalysis, Material and Process design to produce Hydrogen and Syngas
- P2X Road mapping together with Socio-Economic groups and SME

Yr 4 to 7

4 Technology Clusters for validation, integration and Pilot projects

Yr 8 to 10

• 3 System Demonstration and Application (Industry lead)

- P2X provides vast seasonal energy storage capacity and provides flexibility in the energy supply from Renewables
- P2X-CCU enables a CO₂ neutral fuel cycle based on hydrocarbons and existing infrastructure
- Technical challenge: innovation in CO₂ splitting and CO-O₂ separation
- Economic challenge: cost reduction, government regulation, business case expected to emerge around 2030, cost of CO₂ to reach € 200/tonne
- In 10 yrs time, cost Wind and Solar tumble, whilst cost of decommissioning, waste disposal and climate change factored into cost of nuclear and fossil power.
- System approach is essential in future energy system, incl. waste disposal, storage and customer acceptance