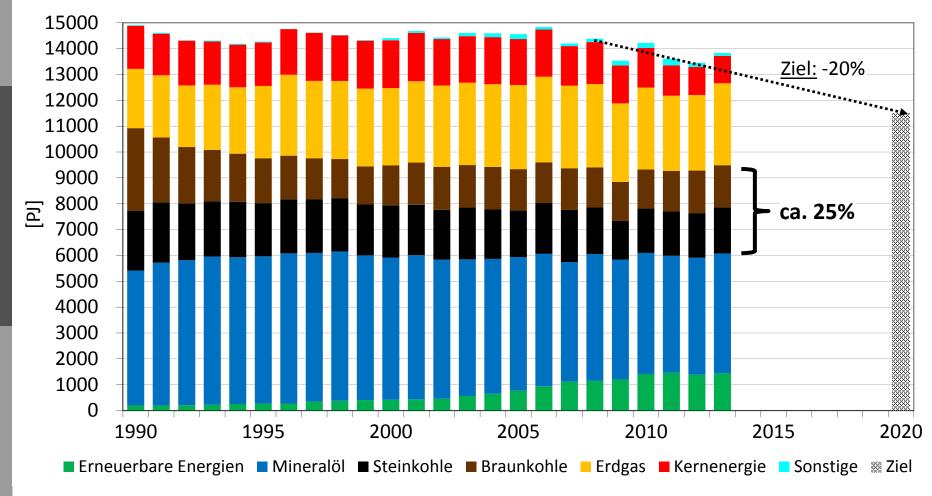
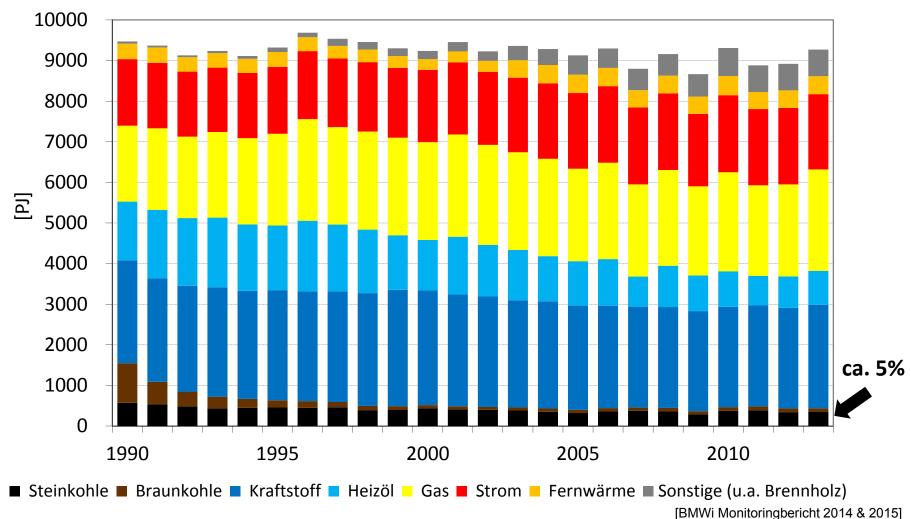


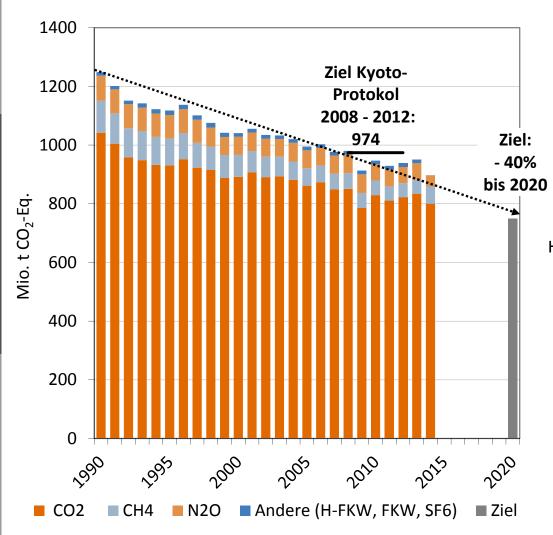
Ende des Kohlezeitalters? Mögliche Szenarien für Deutschland

20. Oktober 2016 | Dr.-Ing. Heidi U. Heinrichs
Herbstsitzung des Arbeitskreis Energie in der DPG, Bad Honnef

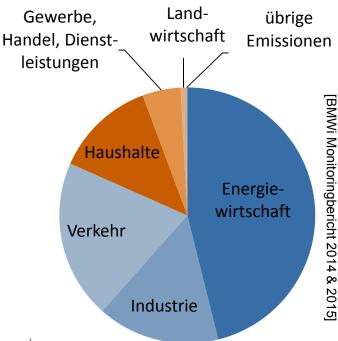

Ende des Kohlezeitalters in Deutschland? ...

- Heute und wie wir dahin kamen...
 - Status quo der Kohlenutzung
 - Motivation eines Kohleausstiegs
 - Status quo Kohlekraftwerke und Kohleausstieg
- Ausblick mit Hilfe von Szenarien...
 - Überblick existierender Szenarien
 - Eigene Szenarien eines Kohleausstiegs
- Fazit & Ausblick


Status quo der Kohlenutzung in DE – Primärenergieverbrauch

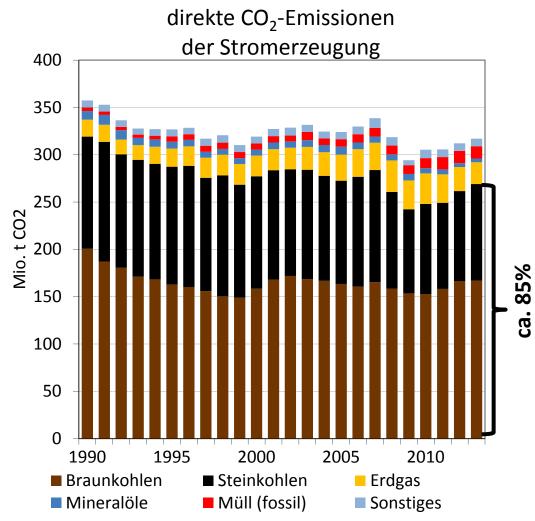


Status quo der Kohlenutzung in DE – Endenergieverbrauch



Motivation eines Kohleausstiegs – Die deutschen THG-Ziele I

...davon ca. 75% energiebedingte CO₂-Emissionen...


...davon ca. 46% in der Energiewirtschaft...

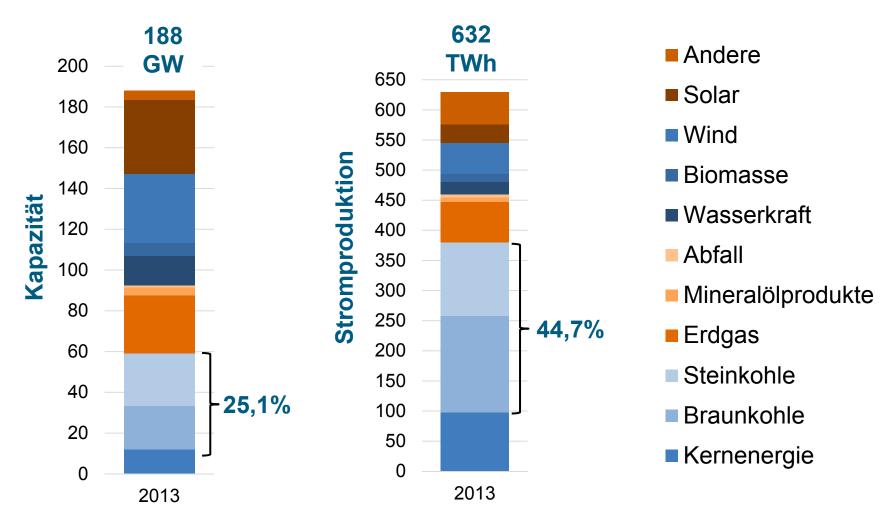
Motivation eines Kohleausstiegs – Die deutschen THG-Ziele II

- Kohlekraftwerke für ca.
 28% der deutschen
 THG-Emissionen
 verantwortlich
- relativ günstige CO₂-Grenzvermeidungskosten
- Ausbauziele für erneuerbare Energien im Energiekonzept
- → Diskussion um einen Kohleausstieg...

[BMWi Monitoringbericht 2014 & 2015]

glied der Helmholtz-Gemeinschaft

Der Begriff Kohleausstieg


Mit "Kohleausstieg" verbinde ich, dass	Ja	Nein	
bestehende Kohlekraftwerke nach einem festgelegten Zeitplan systematisch abgeschaltet werden.	91,1 %	8,9 %	
neue Kohlekraftwerke oder neue Braunkohletagebaue	88,5 %	11,5 %	
nicht mehr genehmigt werden. für die Stromerzeugung in Deutschland keine Kohle		,	
mehr genutzt wird.	79,6 %	20,4 %	
keine öffentlichen Mittel mehr für die Förderung des			
Baus von Kohlekraftwerken in anderen Ländern verwendet werden.	74,2 %	25,8 %	
energieintensive Branchen wie Stahl- oder			161
Chemieindustrie künftig keinen Strom aus Kohle mehr	62,4 %	37,6 %	al., 2016]
nutzen.			l to
kein Strom mehr aus anderen Ländern importiert wird,	51,1 %	48,9 %	Schumann
der aus Kohle erzeugt wurde.] <u>ૹ</u>

→ Kohleausstieg = keine Kohle zur Stromerzeugung

Mitglied der Helmholtz-Gemeinschaft

JÜLICH FORSCHUNGSZENTRUM

Status quo Kohlekraftwerke und Kohleausstieg

tglied der Helmholtz-Gemeinschaft

JÜLICH FORSCHUNGSZENTRUM

Faktisches Wissen über die Kohlenutzung in Deutschland

Aussage	Trifft zu	Trifft nicht zu	Ich weiß nicht
Der größte Anteil des Stroms in Deutschland wird aus Kohle hergestellt.	31,8 %	36,7 %	31,5 %
In Deutschland ist die Stromerzeugung aus Kohle in den letzten drei Jahren deutlich gesunken.	54,0 %	18,3 %	27,7 %
Mehr als 70 Prozent der in Deutschland genutzten Steinkohle wird aus anderen Ländern importiert.	29,9 %	17,4 %	52,7 %
Mehr als ein Viertel der in Deutschland genutzten Braunkohle wird aus anderen Ländern importiert.	25,8 %	20,9 %	53,3 %
Aus Kohle können Chemikalien oder Kunststoffe hergestellt werden.	45,4 %	13,3 %	41,5 %
Eine wirtschaftliche Stahlerzeugung ist auf den Einsatz von Kohle angewiesen.	36,5 %	17,4 %	46,1 %

→ Geringes Wissen über Bedeutung der Kohle in Deutschland

Schumann et al., 2016]

Status quo Kohlekraftwerke und Kohleausstieg

- anhaltende Diskussion um einen vorzeitigen Kohleausstieg
- beschlossener "Braunkohlekompromiss"
 - Stilllegung von 2,7 GW Braunkohlekraftwerken (s. Tab.)
 - Vorhaltung dieser Kapazitäten für 4 Jahre als Reserve

Zeitpunkt	Name	Bundesland
1. Okt. 2016	Buschhaus	NI
1. Okt. 2017	Block P + Q Frimmersdorf	NRW
1. Okt. 2018	Block E + F Niederaußem Block F Jänschwalde	NRW BB
1. Okt. 2019	Block C Neurath Block E Jänschwalde	NRW BB

Ausblick mit Hilfe von Szenarien...

Szenarien sind...

"...eine plausible und häufig vereinfachte Beschreibung davon, wie die Zukunft sich gestalten könnte, basierend auf einer kohärenten und in sich konsistenten Reihe von Annahmen über die treibenden Kräfte und wichtigsten Zusammenhänge. Szenarien können von Projektionen abgeleitet sein, beruhen aber oft auf zusätzlichen Informationen aus anderen Quellen, manchmal kombiniert mit einer Modellgeschichte." [UBA gemäß IPCC (2007)]

/litglied der Helmholtz-Gemeinscha

Überblick existierender Szenarien...

Überblick existierender Szenarien

- Unterschiedliche Zielstellungen, Auftraggeber, Schwerpunkte, Methoden, Zeithorizont, etc.
- Häufige Szenarientypen
 - Referenzszenarien z.B. Business-as-usual (explorativ)
 - Zielszenarien z.B. Energiekonzept/ Klimaschutz (normativ)
 - Maßnahmenszenarien z.B. Kohleausstieg (explorativ)
 - ...
- Übersicht Sterbekurven Kohlekraftwerke →

Beispielhafte Szenarien: Braunkohlekraftwerke

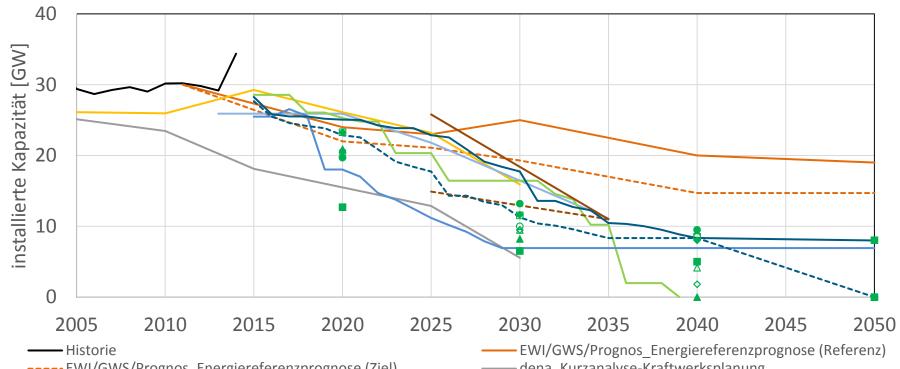
---- EWI/GWS/Prognos Energiereferenzprognose (Ziel) Prognos Bedarf an konventioneller Kraftwerkskapazität

- Agora Energiewende Klimaschutzbeitrag (Referenz)
- Agora Energiewende Klimaschutzbeitrag (Klimaschutz)
- Agora Energiewende (Ausstieg 2045)
- Agora Energiewende (Ausstieg 2035)

Ecofys

- ---- Netzentwicklungsplan max
- Greenpeace
- -- Technische Lebensdauer 50a + Minenbetriebsdauer

- - dena Kurzanalyse-Kraftwerksplanung
 - DIW/TUB Auswirkungen von CO2-Grenzwerten
- Agora Energiewende Klimaschutzbeitrag (ohne Retrofit)
- Agora Energiewende Kohlekonsens (Referenz)
- Agora Energiewende (Ausstieg 2040)
- △ Agora Energiewende (Ausstiegskonsens 2040)


IZFS

Netzentwicklungsplan - min

Technische Lebensdauer 50a

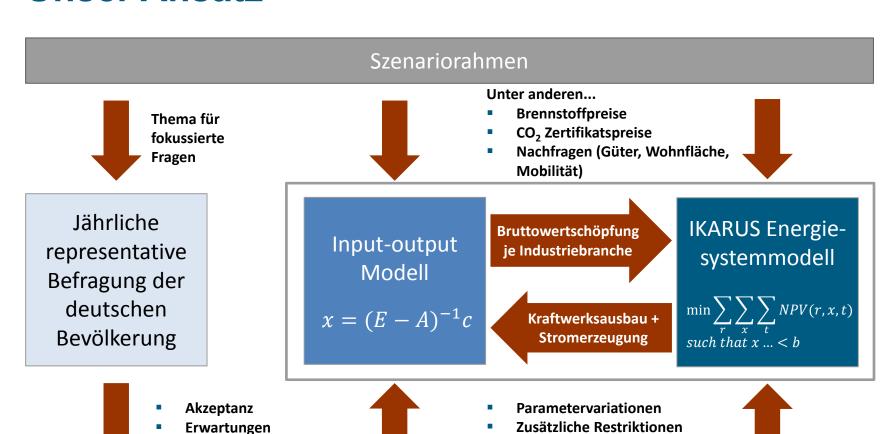
[Heinrichs&Markewitz 2016, Biß et al. 2016]

Beispielhafte Szenarien: Steinkohlekraftwerke

- ---- EWI/GWS/Prognos Energiereferenzprognose (Ziel)
 - Prognos Bedarf an konventioneller Kraftwerkskapazität
 - Agora Energiewende Klimaschutzbeitrag (Referenz)
 - Agora Energiewende Klimaschutzbeitrag
 - Agora Energiewende (Ausstieg 2045)
 - Agora Energiewende (Ausstieg 2035)
 - **Ecofys**
 - Netzentwicklungsplan max
 - Technische Lebensdauer 45a

- dena Kurzanalyse-Kraftwerksplanung
- DIW/TUB Auswirkungen von CO2-Grenzwerten
- Agora Energiewende Klimaschutzbeitrag (ohne Retrofit)
- Agora Energiewende Kohlekonsens (Referenz)
- Agora Energiewende (Ausstieg 2040)
- Agora Energiewende (Ausstiegskonsens 2040)
- **IZES**
- ---- Netzentwicklungsplan min
- ---- Technische Lebensdauer 40a

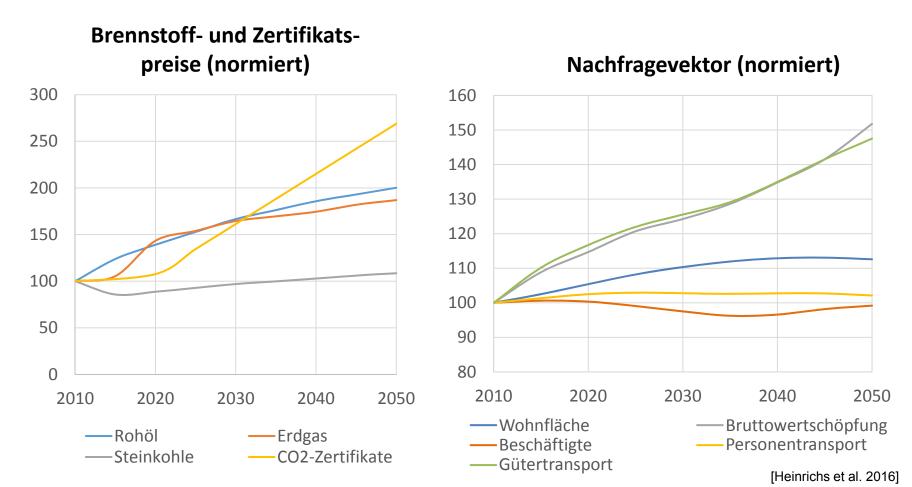
[Heinrichs&Markewitz 2016, Biß et al. 2016]


Beispielhafte Szenarien:

- in allen Szenarien Rückgang der Kapazitäten von Kohlekraftwerken
- unterschiedliche Geschwindigkeiten und Begründungen für beobachteten Rückgang in Abhängigkeit vom Szenarientyp
- meistens schnellerer Rückgang von Braunkohlekapazitäten im Vergleich zu Steinkohlekapazitäten

tglied der Helmholtz-Gemeinsch

Szenarien eines Kohleausstiegs – Unser Ansatz


Szenariovariationen

[Heinrichs et al. 2016]

Wesentliche Rahmenannahmen

Bevölkerung: Rückgang von 80,8 Mio₂₀₁₃ auf 73,6 Mio₂₀₅₀

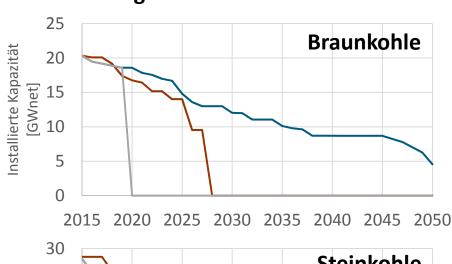
Untersuchte Ausstiegsstrategien

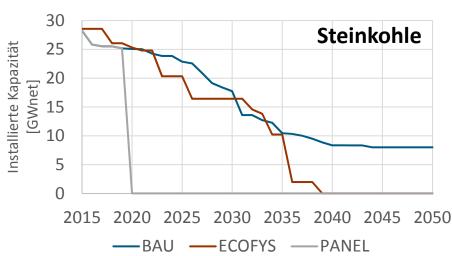
Definition:

Kohleaustieg begrenzt auf Stromerzeugung auf Basis von Kohle

BAU:

Lebensdauer BK=50a, SK=45a


ECOFYS:


Schneller Ausstieg

PANEL:

Extrem schneller Ausstieg

Angenommene Sterbekurven

tglied der Helmholtz-Gemeinsch

Beispielhafte Ergebnisse: Zeiträume bis zum Kohleausstieg

- Zeitpunkt, bis zu dem Deutschland ohne Probleme auf Kohlekraftwerke verzichten kann
- Zeitpunkt, bis zu dem sich die Befragten einen Ausstieg Deutschlands aus der Kohleverstromung wünschen [Schumann et al., 2016]

glied der Helmholtz-Gemeinsc

Beispielhafte Ergebnisse: Zusätzliche CO₂-Reduktion

- Zusätzliche CO₂-Reduktion im Vergleich zu BAU aber nicht genug für das deutsche CO₂-Ziel
- Ein extrem schneller Ausstieg (PANEL) reduziert weniger CO₂ und benötigt unrealistisch viele neue Gaskraftwerke bis 2020 (=Lock-in Effekt)
- Ø Kosten der zusätzlichen CO₂ Reduktion 2015-2050:
 - ECOFYS ~43€₂₀₁₅/t_{CO2},
 - PANEL ~29€₂₀₁₅/t_{CO2}

tglied der Helmholtz-Gemeinsch

JÜLICH FORSCHUNGSZENTRUM

Beispielhafte Ergebnisse: Makroökonomische Gesamtleistung

- Geringere Kosten für CO₂-Zertifikate und importierte
 Steinkohle + höhere Kosten für Gasimporte
- Kurzfristig: positive Effekte aufgrund von Investitionen in Gaskraftwerke
- Langfristig: Windkraftausbau kompensiert Effekte des Gasimports
- Sehr sensitiv in Bezug auf CO₂-Zertifikatspreise

Integrierte Ergebnisse

- Deutschland profitiert von einem Kohleausstieg nur bei steigenden CO₂-Zertifikatspreisen (PANEL: ~50€/t_{CO2} in 2050, ECOFYS: ~70€/t_{CO2} in 2050).
- Der von der Bevölkerung präferierte Ausstiegszeitpunkt ist technisch und ökonomisch nicht möglich.
- Ein Kohleausstieg reicht zur CO₂-Zielerreichung nicht aus (insbesondere ein sehr schneller Ausstieg nicht)

...unter den getroffenen Annahmen.

Fazit & Ausblick

- Die Bedeutung der Kohle in Deutschland wird von der Bevölkerung unterschätzt
- Die Ziele der Energiewende erfordern langfristig auch einen Kohleausstieg im Stromsektor
- Eine Analyse möglicher Transformationspfade im Rahmen der Energiewende muss technische, ökonomische und soziale Aspekte umfassen
- Die Integration von sozialen Aspekten in die Energiesystemanalyse weiterentwickeln und vertiefen
- Neben Einstellungen sollte auch Verhalten berücksichtigt werden

Vielen Dank für Ihre Aufmerksamkeit!

Kontakt: h.heinrichs@fz-juelich.de

glied der Helmholtz-Gemeinscl

Literatur

- Biß, K., Gotzens, F., Markewitz, P., Heinrichs, H.: Übersicht der Entwicklung von Braun- und Steinkohlekraftwerken in verschiedenen Szenarien. 2016.
- BMWi, Zweiter Monitoring-Bericht "Energie der Zukunft". 2014, Bundesministerium für Wirtschaft und Energie (BMWi): Berlin.
- BMWi, Fourth "Energy Transition" Monitoring Summary. 2015, Federal Ministry for Economic Affairs and Energy (BMWi), November 2015.
- Heinrichs, H., Markewitz, P. (2016) Long-term impacts of a coal-phase-out in Germany as part of a greenhouse gas mitigation strategy, Applied Energy (in review).
- Heinrichs, H., Schumann, D., Vögele, S., Biß, K., Shamon, H., Markewitz, P., Többen, J., Gillessen, B., Gotzens, F., Ernst, A. (2016) Integrated assessment of a phase-out of coal-fired power plants in Germany, Energy (submitted).
- Schumann, D., Fische, W. & Hake, J.-F. (2016) Kohlenutzung und Kohleausstieg aus Sicht der Bevölkerung. *Energiewirtschaftliche Tagesfragen*, 66:6, 18-22.