

Materialentwicklung für Energieanwendungen mit extremen Bedingungen

Christian Linsmeier

J.W. Coenen, J. Riesch*, B. Unterberg, T. Dittmar, B. Jasper, Y. Mao, F. Koch*, A. Litnovsky, J. Brinkmann, T. Wegener

* Max-Planck-Institut für Plasmaphysik, Garching b. München, Germany

Overview

Introduction: the material challenge

Neutron damaged materials

Research towards advanced materials

- Extrinsic toughening: composite materials
- Intrinsic safety: smart alloys
- Hydrogen isotope permeation: barrier layers

Summary and outlook

Extreme loads in different technologies

Operational conditions

Plasma-facing materials and components are subject to extreme loads

ITER Divertor: status

Full-W armor: one divertor until 4 years into DD/DT phase

- fully actively cooled (water, 70 °C)
- dome: flat tiles
- vertical targets (2,000): monoblocks (320,000)
- themal performance up to 20 MW m⁻² steadystate

Monoblock technology available (JADA)

R. Villari et al., FED (2013)

Radiation damage after 4 years DD/DT operation (5.26 x 10²⁶

neutrons)

- Steel < 0.3 dpa
- Tungsten armour < 0.1 dpa
- CuCrZr < 0.5 dpa

Helium production

• rewelding criterion: 3 appm (design: 1 appm) reached after 9 years, in critical areas acceptable

Nuclear heating

approx. 1 MW per cassette assembly (roughly 2:1 for steel and W armour), input for thermo-mechanical analysis

Conclusion

• ITER divertor nuclear loads not critical lifetime into DD/DT operation

From ITER to DEMO

JÜLICH

ITER

- operational flexibility (experimental device)
- transient heat flux events
- T-codeposition on "cold" surfaces
- no energy conversion (70°C water coolant)
- low duty cycle
- low neutron dose (wall: ~1 dpa)

Need to apply available materials and technology

DEMO

- lifetime (erosion, ageing)
- very limited transient heat flux events
- energy conversion (coolant: ≥300°C water, ≥400°C He)
- high duty cycle
- high neutron dose (wall: 80...100 dpa divertor: 2-5 dpa/fpy)
- low activation materials

Need for innovation in nonactivating materials and technology

DEMO divertor challenges

Requirements

- High power handling capability: 10-15 MW m⁻² in steady-state (20 MW m⁻² in slow transients)
- Erosion resistance: low sputtering

Proven divertor concept: W monoblock design, water cooling at elevated temperatures (e.g. PWR: 300 °C)

Neutron loads

- Tungsten armour 2 4 dpa/fpy
- CuCrZr alloy tube 2.5 5 dpa/fpy

Consequences

- Reduction of thermal conductivity
- Embrittlement (defects, He production)

Baseline materials: Operational gap

Tungsten

- Operation mostly within brittle regime
- W→Re transmutation increases brittleness after irradiation

Cu alloy (heat sink, cooling tube)

- narrow optimum regime
- loss of strength above 300 °C

New material solutions: Metal-matrix composites

CuCrZr SiC fiber / Cu matrix W fiber / Cu matrix

Tungsten: W fiber / W matrix

Quantitative criterion: Fracture toughness

Li & You, FED (2014)

Increase fracture toughness by extrinsic energy-dissipating mechanism!

PMI and material aspects in fusion research

Wall materials	Stationary operation	Tritium inventory	Reactor operation
•tungsten as first wall	actively cooled wall	•permeation barrier	high power heat sinks
•C+Be+W material mix	components	layers	neutronen damage
 chemical erosion 	 bonding technologies 	 functional coatings 	•operational safety
•impurities and transpor	t (W, C / Cu, steel)		
 hydrogen inventory 			

New material approaches needed

Overview

Introduction: the material challenge

Neutron damaged materials

Research towards advanced materials

- Extrinsic toughening: composite materials
- Intrinsic safety: smart alloys
- Hydrogen isotope permeation: barrier layers

Summary

Effects of neutron irradiation

atomistic	thermo-mechanical	component	operational
Defect production and migration Transmutation, He production	Hardening and deformations Fracture and embrittlement Creep, swelling surface modifications Precipitation and segregation He embrittlement	Crack formation/ enhanced erosion, melting Brittle destruction / dust formation Fuel retention	Reduced life time of plasma facing components Issues for operational safety
Radiation damage event Damage cascade Defect formation and diffusion Void and bubble formation	Physical and mechanical effects of radiation damage	Enhancement of PWI processes / material damage under heat and plasma loads	Relevance for nuclear fusion reactors

Irradiation hardening

Increase in stress required to start a dislocation moving on its glide plane

Embrittlement

> Ductile-to-brittle transition temperature (DBTT): yield stress σ_y equals fracture strength σ_f

Irradiation causes DBTT to increase: different sensitivities of yield stress and fracture strength to neutron damage

Embrittlement of tungsten

- Severe reduction of operational temperatures
- For PFMs: enhanced probability of crack formation

V. Barabash et al. / Journal of Nuclear Materials 283-287 (2000) 138-146

Transmutation of W in a DEMO spectrum

- Initial material: pure W
- Exposure to neutron spectrum of a DEMO fusion reactor
- Transmutation to other elements, incl. He, Re (3.8 at%), Os (1.8 at%), Pt
- He causes grain boundary embrittlement

Transmutation: Decay times after n-irradiation 💋 JÜLICH

Source: R.A. Forrest et al., Handbook of Activation Data, 2009

Impact of synergistic loads on crack formation

Enhanced erosion of irradiated tungsten in synergistic loading conditions

recrystallization

ELM simulation with high rep rates

Th. Loewenhoff, et al., Fusion Engineering and Design 87 (2012) 1201-1205

Change of material composition

Radiation (plasma) induced:

- RIS: spatial redistribution of solute and impurity elements in a metal

 enrichment or depletion of alloying elements near surfaces
- Reason: different coupling of solutes to defects
- Phase instabilities

- Issue for functional surface coatings (e.g. passivating layers or permeation barriers)
- Impact on surface
 composition as determined by
 preferential sputtering (e.g.
 EUROFER)
- Cr enriches in F-M alloys, leading to grain boundary embrittlement [Gupta et al., J. Nucl. Mater. 351 (1-3) (2006), 162.]

Overview

Introduction: the material challenge

Neutron damaged materials

Research towards advanced materials

- Extrinsic toughening: composite materials
- Intrinsic safety: smart alloys
- Hydrogen isotope permeation: barrier layers

Summary

Research tailored towards fusion reactors

Research focus:

- material development
 - definition
 - preparation and characterization
 - optimization
- PWI issues
 - erosion
 - retention
 - lifetime

Materials tests:

- neutron damage (simulation AND "real" neutrons)
- plasma exposure
- ELM (off-normal events) simulation

Material testing at FZJ

- Integrated characterization of thermo-mechanical and physical-chemical properties of neutron irradiated and toxic plasma-facing materials under high heat loads and plasma exposure
- Selection of plasma-facing materials tested under n-irradiation and optimized for PMI processes (tritium retention, embrittlement, erosion)

Overview

Introduction: the material challenge

Neutron damaged materials

Research towards advanced materials

- Extrinsic toughening: composite materials
- Intrinsic safety: smart alloys
- Hydrogen isotope permeation: barrier layers

Summary

Limitations of operation temperatures for tungsten:

Tungsten: Brittleness problem

Limitations of operation temperatures for tungsten:

Lower limit: ductile-brittle-transition temp. T_{DBT} (260-650°C) Upper limit: recrystallization temp. T_{rec} (1300°C) plus: neutron embrittlement

- scattering in strength (small Weibull modulus)
- no damage tolerance
- uncertainty in lifetime prediction

Solution: extrinsic toughening (ductilization) mechanisms

- \Rightarrow local energy dissipation
 - crack bridging
 - fiber oull-out
 - crack deflection

Limitations of operation temperatures for tungsten:

Lower limit: ductile-brittle-transition temp. T_{DBT} (260-650°C) Upper limit: recrystallization temp. T_{rec} (1300°C) plus: neutron embrittlement

- scattering in strength (small Weibull modulus)
- no damage tolerance
- uncertainty in lifetime prediction

Solution: extrinsic toughening (ductilization) mechanisms

- \Rightarrow local energy dissipation
 - crack bridging
 - fiber oull-out
 - crack deflection

Main advantages for fusion

- damage tolerance
- mechanical effect
- ⇒ less susceptible to operational embrittlement

e.g. full tungsten tile under cyclic loading

catastrophic failure by brittle fracture after a random number of cycles or caused by overload

W_f/W under cyclic loading

Crack is bridged by fibres

Architecture of W_f/W

• Fibre

Drawn tungsten wire (d = 150μ m): high strength + some ductility

Interface

PVD coating: Optimised adhesion + stability

• Matrix

Interface integrity + high density Develop **chemical vapour infiltration (CVI)** technique for W_f/W **Powder metallurgy** (PM-W_f/W)

Matrix synthesis

Chemical vapor infiltration (CVI)

- + Low temperature process (600 – 1000 K)
- + No mechanical impact
- → Preservation of interface/ fiber integrity
- Low experience in W bulk production
- Residual porosity

Powder metallurgy (PM)

- + High experience in W bulk production and processing e.g. PIM
- + Easier implementation of alloying (e.g. self passivating W)
- High temperature
- High pressure

Tungsten infiltration (WILMA)

Production of W from the gas phase

Development of CVI-tungsten

3-Point bending test (ESI Leoben)

Stepwise 3-point bending

In-situ surface

observation in

microscope

electron

Multi-fibre composite

- \rightarrow W-CVI
- \rightarrow 10 layers x 9 fibres
- \rightarrow 2.2 mm x 3 mm

First fibre layer half cut

Demonstration: in situ bending test

Toughness enhancement W_f/W

Controlled crack propagation + rising load bearing capacity

Alternative production routes

HIP – Hot isostatic pressing

- capsule filled with tungsten powder and fiber inside a pressure vessel
- powder compaction due to high pressure and temperature
- T_{max} 2000°C
- p_{max} 350MPa (via Ar)

FAST – Field-assisted sintering technology (SPS – Sparc plasma sintering)

- powder compaction due to Joule heating/melting, enhanced diffusion (electromigration)
- T~1900°C
- uniaxial pressure (p_{max} 60MPa)
- process time ~4 min, 200 K/min

Alternative production routes

HIP – Hot isostatic pressing

- capsule filled with tungsten powder and fiber inside a pressure vessel
- powder compaction due to high pressure and temperature
- T_{max} 2000°C
- p_{max} 350MPa (via Ar)

EDS – Electro discharge sintering

- tungsten powder and fiber are put inside an extrusion die
- powder compaction due to ohmic heating by a high current (500kA) + uniaxial pressure (p_{max} 350MPa)
- process time <1s, E_{max}=80kJ

W_f/W: fibers and matrix

HIP

powder: $d = 10 \mu m$ fibers: $I \sim cm$ $d = 150 \mu m$

FAST

powder: d =5 μm fibers: l =2.5 mm d =240 μm

HIP W_f/W composites

- intact interface after HIPing
- dense matrix achievable

Fiber coating by magnetron sputtering

FAST W_f/W: Interface thickness

Electron Image 1

1 μm W/1 μm Y₂O₃ interface^{insmeier} | DPG AKE Bad Honnef | 2017-04-06

 $2.5 \ \mu m \ Y_2 O_3$ interface

20um

 $1 \ \mu m \ Y_2 O_3$ interface

Ch. Linsmeier | DPG AKE Bad Honnef | 2017-04-06

Towards W_f/W bulk production

FAST multi-fiber composite

- d = 40 mm, h = 5 mm, 121 g
- 5 μm powder (OSRAM)
 30% fibers (150 μm x 1.5 mm)
 random orientation
- 94-95 % density
- FAST: 60 MPa, 1900 °C (4 min)

CVI/CVD oriented fibers

- 50 x 50 x 3.5-4 mm³, 194 g
- 10 layers à 220 fibers
- unidirectional long fibers
- density 93-98 % (94.2 % average)
- pore-free growth possible

Overview

Introduction: the material challenge

Neutron damaged materials

Research towards advanced materials

- Extrinsic toughening: composite materials
- Intrinsic safety: smart alloys
- Hydrogen isotope permeation: barrier layers

Summary

Accidential loss of coolant in reactor

Power plant conceptual study

Temperature profile in PPCS Model A, 10 days after accident with a total loss of all coolant.

[Final Report of the European Fusion Power Plant Conceptual Study, 2004]

- Accidental loss of coolant: peak temperatures of first wall up to 1200 °C due to nuclear afterheat
- Additional air ingress: formation of highly volatile WO₃ (Re, Os)
- Evaporation rate: order of 10 -100 kg/h at >1000°C in a reactor (1000 m² surface)
 - \rightarrow large fraction of radioactive WO_3 may leave hot vessel

Development of selfpassivating tungsten alloys

Concentrated solar power

Increased efficiency with high receiver temperature in air

- Highest potential: solar tower concept
- Status: Solar steam turbines: η <30%
- available receiver temperatures <900 °C
- aim: Solar gas and steam process

receiver T: >1500°C, efficiency ~50%

Requirements for "smart" W alloys

Fusion

CSP

Normal operation conditions

- W-dominated plasma-wall interactions
- Limited and controlled H isotope retention

After LOCA event

(loss of coolant accident)

- Strong reduction of oxidation rate
- Stable protective layer

General

- Large-scale bulk material production routes
- No formation of brittle phases

- Operation in air
- Fast thermal gradients
- No element restrictions due to nuclear activation

Idea: Tungsten alloys

Self passivating tungsten-based alloys:

Surface composition automatically adjusts to the requested property

Normal operation (600°C): Formation of tungsten surface by depletion of alloying element(s) due to preferential sputtering

Accidental conditions:

(air ingress, up to 1200 °C) Formation of protective barrier layer

Choice of alloying elements

Si-free alloys: W-Cr- (Ti / Ta / Y)

Reduction of oxidation rates

- Model thin films: several orders of magnitude
- Bulk materials: less reduction, different mechanisms?

Composition

- Both Ti and Ta alloys successful
- Maximise W fraction: W-Cr6-Y0.04: 82 at% W Oxdiation rate <5x10⁻⁶ mg²cm⁻⁴s⁻¹

Yttrium as active element

Y at the grain boundaries

- Smaller grains
- Thinner oxide

layer

Y at the oxide-alloy interface

- Oxidation pegs, good adhesion
- Oxidation inwards to the surface
- Less pores

Reactivity towards impurities

 Very stable oxide vs. impurities

Oxidation suppression: direct observation

10 hours, 1000 °C, dry air, 1 atm

High temperature oxidation

Protective surface layer

D retention after plasma exposure

- correlation between Ti concentration and D retention
- comparable to PVD tungsten for low Ti fraction
- bulk material: similar after Ti correction for oxide fraction

Plasma exposure of W-Cr-Ti alloys

PSI-2 linear plasma device

- D plasma, ion energy ~ 200 eV (bias -250 V)
- fluence 1.3 x 10²² D cm⁻²d
- T_{sample}: 600-700 °C (FLIR)

W surface enrichment

Oxidation behavior

- no plasma influence on oxidation
- alloy: 1/3 evaporation rate
- linear oxidation improvement required

W alloy bulk production methods

T = 2000 °C, t = 30 min

T = 1474 °C, P = 64 MPa, t = 10 min

MA + HIP:	submicron grains,
	TT INCIUSIONS
PS:	grain size ~ 20 µm,
	TiO _x inclusions
SPS:	grain size ~ 10 µm,
	"cracked" Ti inclusions
all:	Cr-rich/Cr-poor grains

Overview

Introduction: the material challenge

Neutron damaged materials

Research towards advanced materials

- Extrinsic toughening: composite materials
- Intrinsic safety: smart alloys
- Hydrogen isotope permeation: barrier layers

Summary

Hydrogen isotope permeation

Hydrogen diffuses easily in metals – Important in various application fields

Fusion

- Radioactive inventory and material embrittlement
- Permeation of T₂ into coolant
- Consider impact of Tritium inventory on TBR
- ⇒ Reduction of permeation by a factor 50...100 necessary

Concentrated solar power

- Hydrogen from thermal decomposition of heat carrier
- Diffusion through glass into insulating vacuum
- \Rightarrow Efficiency reduction of plant

Alternative chemical energy carriers, Hydrogen system

- Thermochemical synthesis: syngas, water gas shift reaction (H₂, CO, CO₂, CH₄)
- Loss of H₂: reactors, power plants
- Transport and storage of hydrogen
- \Rightarrow Wide ranges of temperature and composition for H₂ permeation

First tests: Al₂O₃ and Er₂O₃

D. Levchuk, IPP

Er_2O_3 by sol-gel deposition Y_2O_3 by magnetron deposition 0.0001 Eurofer Er₂O₃ Sputter T. Chikada et al. / Fusion Engineering and Design 85 (2010) 1537–1541 10⁻¹⁰ Permeation flux (mol/s/m²) O Arc Permeability (mol/m·s·Pa^{0.5}) 1e-005 202 Sputter 10⁻¹¹) 1e-006 ∇ 10⁻¹² ∇ F82H 1e-007 sample (e) 0 sample (f) 0 Ο 1e-008 10⁻¹³ 100 1000 10 1.0 1.2 1.4 1.6 1.8 D₂ Pressure (mbar) 1000/T (1/K)

- Various deposition techniques: arc deposition, chemical routes, magnetron sputtering
- Hydrogen permeation is drastically reduced by applying erbia, alumina or yttria
- Thin (< 1µm) layers stable (no cracks) during thermal cycling

Reduction of permeation by a factor 50...100

Barriers on 9-Cr steels

Summary

Advanced materials for DEMO / a fusion reactor

- Combination of neutron / thermo-mechanical / particle loading
- No operational window for available materials
- Development and testing for new material (composites) required

W fiber / W matrix composites

- Development of W-CVI and powder metallurgical routes
- Verification of toughening effect: Stable crack propagation + rising load bearing capacity: damage tolerance
- Active toughening mechanism for fully brittle samples: resistance against embrittlement

Self-passivating W alloys

- Up to 10⁵-10⁶ reduction of oxidation rates for ternary alloys
- Transfer from thin films to bulk material successful
- Combine extrinsic toughening concept with new alloys!

Outlook

Multi-component materials

- Combination of materials solutions: brittle alloys with composites
- Hydrogen isotope inventory (PWI processes):
 - Dynamic evolution of composition during operation
 - Composites and alloys: new transport/trapping channels for T
 - n-induced damage: increased T retention?

Applications: DEMO, CSP, Alternative fuels

- Thermomechanical properties after 14 MeV neutron irradiation?
- Neutron damage: large T inventory, erosion behavior?
- Fusion and other energy applications: similar requirements, similar material and failure criteria: synergistic research

end of presentation

