

Werkstoffentwicklung für die elektrochemische Energietechnik

Olivier Guillon

Institute of Energy and Climate Research IEK-1: Materials Synthesis and Processing

Earth & Environment

Health

Key Technologies

Structure of Matter

Transport & Space

18 Centers Budget: € 4.45 billion per annum

IFM-GEOMA

Helmholtz-Zentrur Geesthacht

Zentrum für Material- und Küstenforschung

MDC

Berlin-Buch

رکل

GFZ

HelmholtzZentrum münchen Deutsches Forschungszentrum für Gesundheit und Umwelt

HZB_H

HZDR

AWI

DZNE

HELMHOLTZ

ZENTRUM FÜR

GSÍ

61377

IPP

Forschungszentrum Jülich: Facts and Figures

Pe	90	ple	

• Employees: 5.787

- 900+ guest scientists
 (>45 countries)
- Budget: 552 Mio €

Budget

Third-party funding:
 ~ 197 Mio €

Science

Institute of Energy and Climate Research

Materials Research as Core Competence

Challenges related to the Energiewende

,Energiewende' objectives with rising share of renewable energies:

renewable energy

Matching fluctuating availability of renewable energy to demand requires versatile storage options and coupling of different energy carriers

Challenges related to the Energiewende

Balancing volatile power generation and demand to secure supply stability

Need for storage underestimated!

Challenges related to the Energiewende

Chemical energy for storage on different time scales and various use cases

Liquid energy carriers: easy handling, storage and transport

IEK-1 at a glance

From raw material to component:

- Development of functional materials (ionic and electronic conductors, thermo-mechanically stable layers)
- Processing of multilayered systems

High-temperature materials and coatings

Gas separation and reactor membranes

Solid Oxide Fuel Electrolysis Cells

Solid-state Batteries

7

IEK-1 at a Glance: Processing

Large variety of processing methods in use for geometries from <1 μ m up to 500 mm width and layer thicknesses down to sub-nanometre

Outline

Materials for power plants

Gas separation membranes

Solid oxide cells

Electrochemical storage

Development of ceramic membranes

Gas supply

Power Plants, Cement Industry (GREEN-CC), Glas Industry, Steel Industry, etc.

Material development

Stable Functional Materials in dependence of **thermal**, **chemical** and **mechanical** load

Microstructuring

Asymmetric Membranes with tailored microstructure for **flux optimisation.** Application of catalysts

Membrane reactors

Chemical Industry (Syngas Production, Dehydration, Water-Gas-Shift-Reaction, etc.)

Component Manufacturing

Upscaling of **Membrane components** to application relevant scale for PoC-Modules

Gas Separation Membranes

Oxygen Transport in Mixed Conductors

(1) Schulze-Küppers, Diss. Ruhr-Universität Bochum (2010)

(2) Bouwmeester et al. Fundamentals of Inorganic Membrane Science and Technology (1996)

Membrane material selection (for H₂)

Materials with tailored conductivity

Macroscopic properties such as conductivity are controlled by microstructure

Example: Impedance plot of LaSrNbAlO_{4- δ} at 400° C

M. Ivanova et al., J Eur. Ceram. Soc. 35, 1239 (2015)

Equivalent circuit:

 \Rightarrow Grain boundaries control the total conductivity

Typology of grain boundaries

CrossMar

Available online at www.sciencedirect.com

ScienceDirect

Acta Materialia 62 (2014) 1-48

www.elsevier.com/locate/actamat

Overview No. 152

Grain boundary complexions

Patrick R. Cantwell^a, Ming Tang^{b,1}, Shen J. Dillon^c, Jian Luo^d, Gregory S. Rohrer^e, Martin P. Harmer^{a,*}

Grain boundary engineering

Full length article

Expanding time—temperature-transformation (TTT) diagrams to interfaces: A new approach for grain boundary engineering

Patrick R. Cantwell^a, Shuailei Ma^b, Stephanie A. Bojarski^c, Gregory S. Rohrer^c, Martin P. Harmer^{b, *}

Dual-phase membrane for H₂-separation

$BaCe_{1-x}Eu_{x}O_{3-\delta}$: $Ce_{1-y}(Y,Eu)_{y}O_{2-\delta}$

- Perovskite phase with proton conductivity
- Fluorite phase with electronic conductivity and stabilization role against perovskite decomposition under CO₂ atmosphere

- High percolation degree of the two phases
- Two ceramic phases chemically and thermally compatible
- Unprecedented H₂-flux at 700° C, high catalytic activity for water splitting

Stability and Materials Compatibility

gas compositions

	content /vol%		
component	1	2	3
H ₂	15	0.1	34
CO ₂	-	90	-
CO	34	-	-
	51	9.9	2.5
N ₂	-	-	63

Indendis		
membranes	catalysts	
high H ₂ -flux	catalytic activity	
high selectivity of H_2	high selectivity	
thermochemical and microstructural stability		
compatibility of membrane and catalyst		

stariala

Exposure conditions T = 600 -900 $^{\circ}$ C Δ T = 100 $^{\circ}$ C, p_{atm} , t = 72h

D. van Holt, et al., J. Eur. Cer. Soc. 34, 2381–2389 (2014)

Catalyst, Ø 1 - 2 mmExample: Fe₂O₃/Cr₂O₃

Screen printed cat layer on a membrane

Development of membrane components

F. Schulze-Küppers, S. Baumann, W. Meulenberg et al.

Outline

Materials for power plants

Gas separation membranes

Solid oxide cells

Electrochemical storage

Solid oxide cells

SOFC

Decentralized energy supply

Intermediate storage of volatile electricity / Fuel production

Metal-supported cells

Auxiliary Power Units

SOFC/SOEC stack

Long-term stack operation

Operating time under load

66,600 h @ 0.70 %/kh 34,500 h @ 0.30 %/kh

Degradation rate

SOFC - Degradation

Crack and secondary phase formation in electrolyte and at electrolyte/anode interface.

Hypothesis: Mn diffusion via solid state diffusion through gas tight barrier and electrolyte.

Under reducing conditions (fuel side!) sponge-like secondary phase formation.

Menzler N.H., Batfalsky P., Beez A., Blum L., Groß-Barsnick S.-M., Niewolak L., Quadakkers W.J., Vaßen R. Proc. 12th Europ. SOFC & SOE Forum, 05.-08.07.2016, Lucerne, CHE

Rechargeable oxide batteries

FeO/YSZ storage after 10 (left, oxidized) or 11 (right, reduced) half cycles; slight agglomeration and rim formation visible

Berger C.M. et al. J. American Ceramic Society 99 [12] (2016), 4083-4092 Berger C.M. et al. J. Energy Storage 1 (2015), 54-64

Outline

Materials for power plants

Gas separation membranes

Solid oxide cells

Electrochemical storage

Solid-State Batteries

Safety

- No leakage
- No combustion
- Less toxic
- Less reaction with air and moisture

Stability

- Use of "high voltage" materials
- Use of metallic Li/Na (high capacity)
 - \Rightarrow higher energy density
- Temperature stability

Higher integration

- Better packaging, no balancing required
- Easier thermal management

- Lower conductivity of solid electrolytes compared to liquid electrolytes
- Contact resistance at the interfaces

Solid-State Electrolytes

Requirements:

- High Li⁺ ionic conductivity ~10⁻³ S/cm at room temperature
- Negligible electronic conductivity < 10⁻⁹ S/cm
- Low grain boundary resistances (ceramics)
- Chemical stability against electrodes, especially metallic anode
- Wide electrochemical stability window
- Environmentally acceptable and non toxic
- Non-hygroscopic, stable in ambient atmosphere
- Low-cost raw materials, simple processing

No solid-state electrolyte fulfills all criteria!

Battery research at IEK-1

Comparison between Na and Li-ion batteries

Characteristics		stics	Na	Li
Price (for carbonates)		r	0.07 - 0.37 € kg⁻¹	4.11 – 4.49 € kg⁻¹
		es)	(Purity 98.8 – 99.2 % min)	(Battery grade 99.9 %)
Specific	capad	city	1.16 A h g⁻¹	3.86 A h g ⁻¹
Voltage	e vs. S	5.H.E.	- 2.7 V	- 3.0 V
Ioni	c radii	JS	0.98 Å	0.69 Å
Melti	ng Po	oint	97.7 °C	180.5 °C
Number of publications	4000 - 3500 - 2500 - 2000 - 1500 - 1000 - 500 - 0	Li	a Battery Battery	
		1980	1985 1990 1995 2000 Year	2005 2010 2015

Electrolytes currently under investigation

Garnet-type materials

• $La_3Zr_2Li_{7-3x}Al_xO_{12}$ (LLZ:AI)

- Li_{1+x}Al_xTi_{2-x}(PO₄)₃
- $Na_{1+x+y}Sc_{x}Zr_{2-x}P_{3-y}Si_{y}O_{12}$ $La_{3}Zr_{2-x}Ta_{x}Li_{7-x}O_{12}$ (LLZ:Ta)

Glass

 LiPON (thin films only)

ііі існ

Spray drying

LLZ:AI (kg / batch)

Novel sol-gel method (LATP):

- Cheap chemicals, simple lab equipment, easy processes
- Easy scaling-up of production (kg / batch)
- ✓ Good powder qualities (easy sintering, phase purity, high conductivity)

Q. Ma, F. Tietz, O. Guillon, Patent DE 10 2014 012 926, 2014; Q. Ma et al. Journal of the American Ceramic Society, 2016

Processing of solid electrolytes

Na⁺ conducting electrolytes: NASICON

(Na Super Ionic CONductors)

$$\left(\left[A \right]^{+a} \left[MM' \right]^{+m} \left[(PO_4)_3 \right]^{-9} \right)^{+a+m-9=0}$$

Α	 ••alkali cations, alkaline earth cations, H⁺, H₃O⁺, NH⁴⁺, Cu⁺, Cu²⁺, Ag⁺, Pb²⁺,Cd²⁺, Mn²⁺, Co²⁺, Ni²⁺, Zn²⁺, Al³⁺, Ln³⁺ (rare earth), Ge⁴⁺, Zr⁴⁺, Hf⁴⁺ and it can also be vacant
MM′	••di-, tri-, tetra-, pentavalent cations
(PO ₄) ₃	••P can be partially substituted by Si or As

Hong, H.Y.-P. Materials Research Bulletin, 1976. 11: p. 173-182. Hong, H.Y.-P., J.B. Goodenough, and J.A. Kafalas. Materials Research Bulletin, 1976. 11: p. 203-220.

Understanding of transport properties in solid state sodium electrolytes

- Compositional optimisation necessary with respect to component manufacturing
- Easier processing is highly recommended as an alternative to ß-aluminas

Design of a taylored electrolyte: $Na_{3+x}Sc_{x}Zr_{2-x}(SiO_{4})_{2}(PO_{4})$

- Monoclinic crystal structure
- stabilization by Si
- Substitution of Zr⁴⁺ by Sc³⁺:
- close ionic radii, in the optimal range
- increase of Na content

Conduction mechanism in Na_{3+x}Sc_xZr_{2-x}(SiO₄)₂(PO₄)

Possible relevant crystal lattice parameters:

- Distance between sodium positions
- Bottleneck size (triangle area)
- Distance between sodium and next oxygen

Correlation between lattice and conductivity

- NSZSP0.4 snows the highest conductivity (4 mS/cm) of all reported polycrystalline Na-ion conductors
- NSZSPx are electro-chemically stable up to 6 V vs. Na/Na⁺ and show no reaction with Na metal.

Physical Vapor Deposition of LLZ:Ta

- Thickness: 2 µm
- Substrate temperature: >650° C
- Dense layer, cubic phase LLZ:Ta
- Total conductivity 1.2x10⁻⁴ S/cm at R.T.

S. Lobe, C. Dellen, M. Finsterbusch, H.G. Gehrke, D. Sebold, C.-L. Tsai, S. Uhlenbruck, O. Guillon Journal of Power Sources 307 (2016) 684 - 689

PVD of LLZ:Ta – Advanced Li Analysis

SIMS Profile

Sputter Target

Quantitative Li analysis with high resolution and 3D reconstruction is possible!

 $Li_{76}La_{30}Zr_{16}Ta_{04}O_{126}$

Compatibility Requirements of Electrode Material

- Chemically stable to solid electrolyte at sintering temperature, e.g. LLZ:Ta >1000 ° C
- Thermal expansion coefficient match to • solid electrolyte
- Provide some Li-ion and electronic • conductivity
- Low volume change during chargeulletdischarge (<7.5%).

LLZ:Ta and LiCoO₂ have no major reaction up to 1085 °C

S. Uhlenbruck, J. Dornseiffer, S. Lobe, C. Dellen, C.-L. Tsai, B. Gotzen, D. Sebold, M. Finsterbusch, O. Guillon J. Electroceramics, 2017

Cathode Microstructure and Battery Performance

JÜLICH FORSCHUNGSZENTRUM

Co

Fabrication of "bulk" ASBs:

- Electrolyte supported cell
- Pure or mixed LCO cathode (Low T sintering)
- Li metal Anode

SEM

Microstructure of LiCoO₂ and LLZ:Ta composite cathode

Reversible Li extraction from LCO:

- Capacity (utilization) increase for mixed cathode
- High cathode porosity still challenging

Cathode Microstructure and Battery Performance

Battery and Electrochemistry Simulation Tool

General conclusions

- Inorganic materials are key-enabler for future energy supply
- Ceramics have unique thermomechanical and electrochemical properties which can be widely tuned and optimized
- Final properties of a functional layer depend on its microstructure and thickness, which both depend on processing route and processing parameters
- Integration of materials into devices is a critical but necessary step between materials development and application

Thank you for your attention!