

Mitglied der Helmholtz-Gemeinschaft

Rolle chemischer Speicher für die Energiewende

Detlef Stolten

d.stolten@fz-juelich.de

Institut für Elektrochemische Verfahrenstechnik (IEK-3)

AKE Herbsttagung Bad Honnef 19. Oktober 2017

Excess Power is Inherent to Renewable Power Generation

Overcapacity in Power is Inherent for Fully Renewable Energy Supply

renewable power needed = capacity factor x average power demand

- Averaged power demand for Germany: ~ 60GW (80 GW max)
- Capacity factor for full renewable power supply
 - Onshore wind → 4.4 based on 2,000 full load hrs ¬
 - Offshore wind → 2.2 based on 4,000 full load hrs
- \rightarrow Installed renewable power exceeds power demand on a regular basis
- → Counteracting measures are
 - → Curtailment
 - → Interconnection of different climate zones
 - \rightarrow Introduction of new sinks
 - Storage
 - Electrolysis
 - Power to heat
 - Mechanical sinks like hydropower, flywheels etc.
 - Sector coupling
 - Transport (batteries, hydrogen, power-to-fuel)
 - Industry

Institute of Electrochemical Process Engineering IEK-3

@ no losses for reconversion considered

Development of Renewables According to Current German Policy

Example of the Effect of an Increasing Share of Renewable Energy on the Residual Load based on Real Weather Data

Installed capacity regarding to [1] Übertragungsnetzbetreiber (2015): Netzentwicklungsplan Strom 2025 [2] Bartels, S (2016): Simulationsmodell regional aufgelöster Residuallasten in Deutschland, Masterthesis [3] Robinius, M. (2016): Strom- und Gasmarktdesign zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff. Institute of Electrochemical Process Engineering IEK-3

Installed Capacities and Electricity Supply of German Energy JULI Scenarios achieving ≥80% CO₂ Reduction across all Energy Sectors***

Schematic of a Potential Renewable Energy System

- Potential of Wind Energy → Before curtailment
 - Maximum amount of energy that we can produce if we operate <u>all</u> wind turbines
- Produced Wind Energy → Actual amount of energy that is produced
 - Part of this energy is used to supply the electricity demand
 - Remaining is used in electrolyzer to produce hydrogen
- When the amount of produced wind energy is less than the demand \rightarrow Re-electrification

Overcapacity in Power is Inherent for Full Renewable Energy Supply

Capacity factor = $\frac{\text{energy harvested}}{\text{nameplate harvest}}$

Average power demand for Germany: ~ 60 GW (based on **528 TWh** grid electricity)

	Capacity factor	Necessary Power, if just one Technology is applied	Reasonable power mix DE 2050 (DE gov. Installation plans extrapolated)	Reasonable electricity mix DE 2050	Electricity to be converted to H ₂ (serving 75% of passenger vehicles in DE)
Offshore wind	0.46	120 GW	59 GW	236 TWh	
Onshore wind	0.23	230 GW	132 GW	267 TWh	
PV	0.12	<mark>460</mark> GW	120 GW	126 TWh	
Total			311 GW	629 TWh	101 TWh (2,1 mt H ₂)
Untimely produced electricity				≈ 200 TWh (to be stored)	
CO ₂ cut Ø 80%				90% (10% power by NG)	54% of passenger cars

Issues of Integrating Renewables into the Power Grid

Just replacing the power production of fossils by renewables cannot work because

- Renewable energy is inherently subject to strong fluctuations
 - Day/night shifts
 - o Weather
 - o Seasons
- Renewable energy is more site dependent for its low energy density
 - o Photovoltaics is very distributed
 - o Offshore wind power will be much more centralized than conventional power plants

Drivers for Storing Intermittent Renewable Energy

Grid Stabilization

- Primary control (currently covered by inertia of power plant generators, seconds, minutes)
- Secondary control (on-demand power on a 15 minutes basis)
- Tertiary control (purchase of traded power on the markets)
- Cost reduction

Utilization of Renewable Power

- Low energy density → spatial restrictions
- Reduction of curtailment
- Seasonal levelling of renewable energy input
- Optimization criterion is overall cost reduction

Disjunction of Power and Energy – Economic Aspects

- 1. Power and energy scales together
 - E.g.: batteries, super capacitors, fly-wheels etc.
 - Installation size directly translates into power and energy
 - Costs to he most extent scale linearly installation size
 - Energy scales with expensive components like battery chemistry
 - E.g.: Storage w/ battery costs 12 ct/kWh @ 365 cycles, 44 ct/kWh @ 100 cycles
- 2. Power scales less than energy: saves cost for long-term storage
 - Electrolyzer (expensive) controls power, gas cavern (cheap) controls energy
 - Pumped hydro power plants (turbine vs. lake)
 - Compressed air storage (turbine, heat storage if applicable vs. Ga cavern)
 - Decoupled markets like transportation gets accessible
- 3. Power scales more than energy
 - Technology from 2. can deliver
 - Economic grounds questionable

Linking the Power and the Transport Sector

Simple Model to Illustrate the Impact of Cost Considerations

		Base Case	The Value of Transport
Energy transport		Pipeline	Not connected
	Onshore wind	49.9 GW	8.1 GW
orth	Inst. electrolyzers	40.8 GW	7.3 GW
N	Storage capacity (UGS)	8.8 TWh	1.6 TWh
	Onshore wind	0 GW	75.8 GW
outh	Inst. electrolyzers	0 GW	34.9 GW
oS	Storage capacity (Large vessel)	0.3 TWh	12.3 TWh
Tota (TA	al annual cost C)	TAC _{bc}	199% of TAC _{bc}

Decouple Power and Energy for Long-term Storage

Assumption: storage may add about the same price tag to the energy delivered, be it

- Short-term storage, or
- Long-term storage

	Storage cycles / a	Relative allowable invest / kWh*	Energy required	Energy specific investment cost	Power required	Additional cost for conversion units (electrolyzer)
	[1/a]	[%]	[GWh]	[€/ kWh]	[GW]	[€ kW]
Short-term	100 - 1000	100%	some GWh	Batteries 100-200	some 10GW	none
Long-term	1 - 10	1%	some 1000 GWh	Salt cavern << 1 (approx. 0.25)	some 10GW	500 € /kW

Disjunction of Power and Energy

Batteries : Power and energy scale linearly with unit size Hydrogen: Power scales less than energy for loading; quick unloading feasible Electrolyzers Gas caverns

Disjunction of Power and Energy – Economic Aspects

- 1. Power and energy scale linearly with unit size
 - E.g.: batteries, super capacitors, fly-wheels etc.
 - Installation size directly translates into power and energy
 - Costs to he most extent scale linearly installation size
 - Energy scales with expensive components like battery chemistry
 - E.g.: Storage w/ battery costs 12 ct/kWh @ 365 cycles, 44 ct/kWh @ 100 cycles

2. Power scales less than energy: allows for cheap storage (e.g. rock salt caverns)

- Electrolyzer (expensive) controls power, gas cavern (cheap) controls energy
- Pumped hydro power plants (turbine vs. lake)
- Compressed air storage (turbine, heat storage if applicable vs. gas cavern)
- Time-wise decoupled markets like transportation get accessible
- Improved economics for seasonal storage
- 3. Power scales more than energy
 - Technology from 2. can deliver
 - Economic grounds questionable

Storage Densities

Medium	Storage Density
Electricity storage	0,3 -0,9 MJ/I
Mechanical storage	0,001 – 0,01 Pumped hydro; compr. Air)
Gas storage (Electrolysis + storage)	0,9 - 3,7 H ₂ - CH ₄ / Δ 100bar
Liquid storage	approx. 40 MJ/kg gasoline: 32 MJ/l

* @ comparable specific cost

Power to Fuel: Option or Necessity for Heavy Transportation **JÜLICH**

Passenger car-based transport in 2050

Battery vehicle	(renewable electricity)	Fuel cell vehicl	e (renewable electricity)	
Efficiency:	80 % x 85 % = 68 % (WTT) (TTW)	Efficiency:	63 % x 60 % = <mark>38 %</mark> (WTT) (TTW)	
Vehicle cost:	$\Theta\Theta$	Vehicle cost:	$\Theta\Theta$	
Fuel production:	\oplus	Fuel production:	θ	
Storage & distrib.:	$\Theta \Theta \Theta$	Storage & distrib.:	$\Theta\Theta$	
Operating range:	low	Operating range:	medium	
Resources:	sufficient	Resources:	sufficient	
Soot/NOx emissions	s: none	Soot/NOx emission	ns: none	
Combustion en	gine (CO ₂ -based fuels)	Combustior	n engine (bio-fuels)	
Efficiency: 70 (H	% x 50 % x 25 % = 9 % ₂) (plant) (TTW)	Efficiency:	50 % x 25 % = 13 % (WTT) (TTW)	
Vehicle cost:	θ	Vehicle cost:	θ	
Fuel production:	$\Theta\Theta$	Fuel production:	$\Theta\Theta$	
Storage & distrib.:	\oplus	Storage & distrib.:	\oplus	
Operating range:	high	Operating range:	high	
Resources:	sufficient	Resources:	limited	TTW: Tank to
Soot/NOx emissions	s: medium	Soot/NOx emission	ns: medium	WTT: Well-to

Hydrogen Pipeline Network designed for Fueling Stations

1)

2)

Data of designed H₂ pipeline network

	Length / km	Cost / billion €		
Transmission Pipeline	12,000	6 - 7		
Distribution Pipeline	31,000 - 47,000	13 - 19		
5.4 mn tons/a hydrogen result from by renewable power input				
9800 fueling stations @1500 kg H_2/d result from hydrogen input				

Baufume, Grube, Krieg, Linssen, Weber, Hake, Stolten (2012) 12. Symp. Energieinnovation, Graz, 15-17.3. (values adapted here to larger total amount of H₂) incl. compressors for compensation of pressure losses

	Depleted oil / gas fields	Aquifers	Salt caverns	Rock caverns / abandoned mines
Working volume [scm]	10 ¹⁰	10 ⁸	10 ⁷	10 ⁶
Cushion gas	50 %	up to 80 %	20 - 30 %	20 - 30 %
Gas quality	reaction and contamination with present gases, microorganism and minerals		saturation with w	ater vapor
Annual cycling cap.	only seasonal		seasonal & frequ	ient

	Gas holders	Spherical gas vessels	Ground storage assemblies	Pipe storage facilities
Maximum pressure [bar]	1.01 - 1.5	5 - 20	40 - 1000	20 - 100
Storage capacity [scm]	< 6 x 10 ⁴	< 3 x10 ⁵	< 1 × 10 ⁴	< 9 x 10 ⁵
Invest/ storage capacity [‡] [€/scm]	?	20 - 50	50 - 180	20 - 50

Infrastructure: Electrolysis & Large Scale Storage

Estimated seasonal storage capacity21Storage capacity 60 day reserve90Storage capacity until 204040regularly over weeks and months;
DB research, Josef Auer, January 31, 2012

27 TWh_{LHV} 90 TWh 40 TWh

(Pumped Hydro Power in Germany: 0.04 TWh_{e})

Seasonal storage capacity required:	9 bn scm
Existing NG-storage in Germany :	20.8 bn scm
thereof salt dome caverns in use:	8.1 bn scm
Salt cavern in construction/planned :	12.9 bn scm

Source: Sedlacek, R: Untertage-Gasspeicherung in Deutschland; Erdöl, Erdgas, Kohle 125, Nr.11, 2009, S.412–426.

Liquid Organic Hydrogen Carriers (LOHC)

- Liquid, heterocyclic, aromatic hydrocarbon as carriers
- Hydrogenation: saturation of aromatic rings with hydrogen
- Chemicals: N-ethylcarbazole, toluene and other aromatics
- Degradation by formation of unintended by-products

- Hydrogen storage density: 6 8 wt% [1,2]
- Transportation cost ≈ 0.2 €/kg_{H2} via ship (5000 km) [3]
- Japan seeks produce H_2 in Patagonia and transport it home (distance \approx 20,000 km)

	380 kV overhead line	Natural gas pipeline	Hydrogen gas pipeline
Туре	4 x 564/72 double circuit	DN 1000 p _{in} = 90 bar	
Energy transport capacity	1_2 GW _{el}	16 GW _{th}	12 GW _{th}
Investment cost in M€/km	1 - 1.5	1 - 2	1.2 - 3

Spatial Requirements for Transmission

Picture of power poles from Hofman: Technologien zur Stromübertragung, IEH, http://nvonb.bundesnetzagentur.de/netzausbau/Vortrag_Hofmann.pdf

Hydrogen can be Efficiently Transported and Effectively Stored

Transport of energy

Gaseous hydrogen transport High voltage DC-DC power line Conventional AC power line

Energy demand

3% / 1000 km (distributed input-/output) 3% / 1000 km, conversion 4-6%; (point-to-point only) 9% / 1000 km @ 400 kV; Source EoN 5% / 1000 km @ 765 kV; Source EoN

Storage of energy

Hydrogen

Electrical energy

Caverns, no-self discharge; short- & long-term storage Batteries, effective for short-term storage

Energy Concept 2.0 Assessment based on county level

H₂ sources: H₂ sinks: H₂ storage: Pipeline invest [3]: Electricity cost: Total H₂ cost (pre-tax): 28 GW electrolysis power in 15 districts in Northern Germany, 15 billion €
9,968 refueling stations with averaged sales of 803 kg/d, 20 billion €
48 TWh (incl. 60 day reserve), 8 billion €
6.7 billion € (12,104 km transmission grid); 12 billion € (29,671 km distribution grid) LCOE Onshore: 5.8 ct/kWh;

17.5 ct/kWh WACC: 8 %

All values after Robinius, M. (2016): Strom- und Gasmarktdesign zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff. Dissertation RWTH Aachen University, ISBN: 978-3-95806-110-1; except: [3] Krieg, D. (2012), Konzept und Kosten eines Pipelinesystems zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff. Forschungszentrum Jülich IEK-3 Institute of Electrochemical Process Engineering IEK-3

Cost Comparison of Power to Gas Options – Pre-tax

Hydrogen for Transportation with a Dedicated Hydrogen Infrastructure is Economically Reasonable

CAPEX via depreciation of investment plus interest

- 10 a for electrolysers and other production devices
- 40 a for transmission grid
- 20 a for distribution grid and refueling stations
- Interest rate 8.0 % p.a.
- Appreciable cost @ half the specific fuel consumption

[1] Energy Concept 2.0 Institute of Electrochemical Process Engineering IEK-3

Other Assumptions:

- 2.9 million t_{H2}/a from renewable power via electrolysis
- Electrolysis: η = 70 %_{LHV}, 28 GW; investment cost 500 €/kW
- Methanation: η = 80 %_{LHV}

Vergleich Transportoptionen am Beispiel Nord-Süd

Stromnetz (AC AC/DC-**Distribution inkl** $C.H_2$ -Elektrolyse C.H (& Trafos) Wandler **Speicher & Netz** Tankstelle 1,5 t_{H2}/Tag⁽³ 700 km $\eta = 95\%$ $\eta = 70\%$ 2470 km 500 €/kW_{el}(3 3,1 GW_{H2} 3,1 GW_{H2} 3,1 GW_{H2} 4,6 GW 4,4 GW 670 Tankst. 0,13 Mio. 0,36 Mio.€/km⁽² $P_{v}=1\%/100$ km 15 ct/kWh 3,6 TWh_{Speicher} 42 ct/kWh 45 ct/kWh 8,1 ct/kWh 7,2 ct/kWh €/MW⁽¹ 2 Mio. €/St.⁽³⁾ 380 kV (AC) 1,4 Mio.€/km⁽¹ 7,9 Mrd.€/TWh⁽⁴ $2,5 \text{ kWh}_{el}/\text{kg}_{H2}$ AC/DC-**Distribution inkl** $C.H_2$ -Stromnetz (HGÜ) e Elektrolyse $C.H_2$ e (& Umrichter) Speicher & Netz Tankstelle Wandler 5 GW $\eta = 70\%$ $1,5 t_{H_2}/Tag^{(3)}$ 700 km 2570 km $\eta = 95\%$ 6,0 ct/kWh 4,8 GW 3,2 GW_{H2} 4,7 GW 3,2 GW_{H2} 3,2 GW_{H2} 0,36 Mio.€/km⁽² 700 Tankst. P_v=0,3%/100kr 500 €/kW_{el} 0,13 Mio. 7,6 ct/kWh 4000 h_{op}/a 6,8 ct/kWh 14 ct/kWh 44 ct/kWh 42 ct/kWh 3,8 TWh_{Speicher} 2 Mio. €/St.⁽³⁾ €/MW⁽¹ 800 kV (DC) 1,4 Mio.€/km⁽¹ 7,9 Mrd.€/TWh⁽⁴ 1 kWh_{el}/kg_{H2} $2,5 \text{ kWh}_{el}/\text{kg}_{H2}$ AC/DC-H₂-Pipeline Distribution $C.H_2$ -Elektrolyse $C.H_2$ & Speicher Wandler (nur Netz) Tankstelle $1,5 t_{H_2}/Tag^{(3)}$ $\eta = 95\%$ $\eta = 70\%$ 700 km 2680 km 500 €/kW_{el} ^{3,3} GW_{H2} 3,3 GW_{H2} 4,8 GW 3,3 GW_{H2} 3,3 GW_{H2} 730 Tankst. 1,5 Mio.€/km⁽² 0,13 Mio 0,36 Mio.€/km⁽² 6,8 ct/kWh 13 ct/kWh 15 ct/kWh 16 ct/kWh 18 ct/kWh 3,9 TWh_{Speicher} €/MW⁽¹ 2 Mio. €/St.⁽³⁾ 170 Mio.€/TWh ⁽¹ Netzentwicklungsplan Strom 2013 ⁽³ Stolten, Beitrag elektrochemischer Energietechnik zur Energiewende, VDI-Tagung ⁽² Krieg, Konzept und Kosten eines Pipelinesystems zur Versorgung des deutschen Innovative Fahrzeugantriebe, Dresden, 2012 ⁽⁴ Tietze, Near-Surface Bulk Storage of Hydrogen, in: Transition to Renewable Energy

Straßenverkehrs mit Wasserstoff, 2012 Institute of Electrochemical Process Engineering IEK-3

Systems, 2013 29

 $2,5 \text{ kWh}_{el}/\text{kg}_{H2}$

Salt Deposits in Europe

Infrastructure Analysis (simplified)

[1] Electrolyzer @ 500 €/kW

[2] PV @ 1000 €/kW; wind onshore @ 1400 €/kW; offshore @ 3000/kW; Installed capacities after [3] Robinius, M. (2016): Strom- und Gasmarktdesign zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff. Dissertation RWTH Aachen [4] 42 GW GT + comb. Cycles, 23 GW already in place [5] Zeitreihen zur Entwicklung Erneuerbarer Energien, BMWi, August 2016 [6] Netzentwicklungsplan InstNERe2025EBelAtrochemical Process Engineering IEK-3

Global wind power density (aggregated mean 100m height)

Global Wind Atlas. DTU Wind Energy. URL: http://globalwindatlas.com/map.html Institute of Electrochemical Process Engineering IEK-3

Pipeline through Patagonia to Punta Arenas (simplified)

- Factor for indirect route of 1.2 is considered
- 5 tributary pipelines, 500 km each
- \rightarrow Leads to pipeline length of about 4,500 km
- Pipeline model from V. Tietze, cost data from D. Krieg [1]
- Determination of pipeline quantity and diameter without consideration of recompression
- Application of Krieg's cost data (published) leads to more conservative cost estimation
- Recompression and associated costs are to be considered in prospective analysis

[1] Krieg, D. (2012). Konzept und Kosten eines Pipelinesystems zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff.RWTH Aachen University.

Cost Results for H₂ provision – Patagonia to Japan

- H₂ Production of 8.8 Mt/a in Patagonia (use of wind energy)
- Domestic transport via Pipeline (4,500 km)
- Liquefaction and storage in domestic harbor (Cap.: 113,600 tons)
- International transport via ship (Punta Arenas to Yokohama: 17,712 km)

Cost distribution

World Map of Salt Deposits

Conclusions

- **Direct use of power** has the highest efficiency and is to be preferred, if possible.
- Direct hydrogen pathways with fuel cells are second most efficient.
- Hydrogen generation from "excess power" delivers a notable grid service.
- Owing to the inherently high quantities of excess power of renewable concepts "excess power"
 is to be treated as a valuable good. There is no such thing as a low or negative power price if
 the system is adjusted appropriately.
- All **PtF concepts use hydrogen**; the less oxygen in carbon precursors the higher the efficiency.
- Renewable hydrogen is most cost effective in transportation, substituting liquid fuels
- Methanation economically is no option
- Distribution infrastructure for fuels including H₂ amounts to about 20% max. of the investment cost incl. generation; distribution infrastructure issue is currently overrated.
- Battery and fuel cells are much better in efficiency than bio-fuel and power to fuel concepts
- Battery infrastructure is cheap at low market penetration; hydrogen infrastructure is much more cost effective than battery infrastructure at high market penetration.
- Renewable energy is (getting) competitive.
- The moderate efficiency of the combustion engine makes alternate liquid fuel concepts expensive.

Renewable Transportation has a bright future if the right choices are being made timely

Copyright: IEK-3, Forschungszentrum Jülich

Thank You for Your Attention! d.stolten@fz-juelich.de

WILEY-VCH

Edited by Detlef Stolten and Viktor Scherer

Transition to Renewable Energy Systems

WILEY-VCH

Edited by Detlef Stolten, R. Can Samsun, and Nancy Garland

Fuel Cells

Data, Facts, and Figures

