

Windparks in tiefem Wasser: wie schwimmende Unterstrukturen das Potential von Offshore-Windenergieanlagen vervielfachen können

Bad Honnef 19th of April 2018

Dr.-Ing. Frank Adam

@ 2018 UNIVERSITY ROSTOCK | Faculty of Mechanical Engineering and Marine Technology

Dr.-Ing. Frank ADAM (married, 3 children)

- 2009 Diploma at the excellent Technical University of Dresden
- 2015 PhD (summa cum laude) at the Technical University Bergakademie Freiberg (Topic: System dynamic of floating offshore wind)
- Since 2015 group leader offshore wind at the University of Rostock
- Reviewer for several Journals within the field of Renewable Energy
- Member of: ISSC V.4 committee, IEC61400-3-2 standard committee, ISOPE and ReNew conference technical committee
- Observer: DNV-GL JIP Floating offshore wind simulation, Friends of floating wind

Publications:

Content of the presentation

- Motivation
- Introduction & wording
- Calcuation methodes
- Selected examples
- R&D work at the Endowed Chair of Wind Energy Technology

© NREL

Motivation

MOTIVATION - Floating offshore wind vision

DNV·GL

23.04.2018 © 2018 UNIVERSITY ROSTOCK | Faculty of Mechanical Engineering and Marine Technology

Introduction & wording

Introduction - Definition

Introduction - Definition

Introduction -Substructures

Introduction -Substructures

		· · · · · · · · · · · · · · · · · · ·
	Fixed	Floating
Water depth	0 – 50 m Design depending on the water depth	50 – x m Design independent from the water depth
Installation	Hugh and expensive transport & installation vessels needed	Transport & installation with the wind turbine on top; only small tug boats needed
Certification	Each support-structure need it's own certification	Type certification is possible
Costs	Cost competitive for specific boundary conditions (water depth, distance to shore)	On the way to be cost competitive
Environmental impact	Noisy pile driving, decommissioning issues	No pile driving and nearly fully decommission

Introduction - Kind of floating solutions

23.04.2018 © 2018 UNIVERSITY ROSTOCK | Faculty of Mechanical Engineering and Marine Technology

Introduction - Floating stability

Introduction - Floating solutions pilot plants

Introduction - Floating wind marketed analysis

Introduction - Reduced LCOE

Introduction - Reduced LCOE

Introduction -Bathymetry north sea

Introduction - Floating wind marketed analysis

2009

2017

First demo

- Site: Hywind
- Size: 2,3 MW
- Turbine: SWT-2.3-93
- Foundation: Spar buoy
- Demonstration project off the coast of Norway

First wind farm

- Site: Hywind Scotland
- Size: 30 MW
- Turbine: SWT-6.0-154
- World's first floating windfarm, all turbines installed, start of operation late 2017

2020

Demo in France

- Site: Provence Grand Large
- Size: 24 MW
- Turbine: SWT-8.0-154
- Foundation: SBM

2025

Future markets

- · Future markets for floating wind farms are seen in Japan, Taiwan and the US
- Full scale installations expected starting in 2025

1) Hywind wind farm illustration, Source: Statoil; 2) SBM offshore floater, Source: SBM

Introduction - Floating wind marketed analysis

Annual installed and operating capacity of offshore wind globally, 2016-2045

Calcuation methodes

Power coefficient

21

Betz

© R. Gasch: Windkraftanlagen

Loads at profile

Blatt-Elemente-Theorie BE

Bezug zu Impuls und Drehimpulsänderung im Luftstrom BEM Theorie (M für "Momentum")

Impuls $p = m \cdot v$ (p: Impuls)

Luftstrom (stationär)

$$\dot{m}\cdot v = (\rho\cdot A\cdot v)\cdot v$$

Impulsänderung = Kraft

$$T = \rho \cdot A_2 \cdot v_2(v_1 - v_3)$$

Loads at profile

Schub

$$dT = \frac{1}{2} \cdot \rho \cdot \mathbf{c^2} \cdot (c_L \cdot \cos \alpha + c_D \cdot \sin \alpha) \cdot t(r) \cdot dr$$

Vortrieb

$$dU = \frac{1}{2} \cdot \rho \cdot \mathbf{c^2} \cdot (c_L \cdot \sin \alpha - c_D \cdot \cos \alpha) \cdot t(r) \cdot dr$$

Drehmoment

Loads

Selected examples

Principle Powers's buoyancy stabilized system

Statoils's gravity stabilized system

GICON's mooring line stabilized system

23.04.2018 © 2018 UNIVERSITY ROSTOCK | Faculty of Mechanical Engineering and Marine Technology

R&D work at the Endowed Chair of Wind Energy Technology

R&D work at the Chair with regard to floating wind

23.04.2018 © 2018 UNIVERSITY ROSTOCK | Faculty of Mechanical Engineering and Marine Technology

R&D work at the Chair with regard to floating wind

Gravity stabilized	Buoyancy stabilized	Mooring line stabilized
 Structural basis design Active controlled Spar- Buoy concept Transport and Installation process design etc. Reduce costs for fabrication via a structural optimization tool Tank tests & validation 	 Code comparison (OC5&OC6) Simulation Code Verification 	 Structural basis & detail design One-Step installation process Using composite materials Modularity design to get a flexible supply chain Reduce costs for fabrication via a structural optimization tool and flexible supply chain Tank tests & validation
Design of inter error cohlains for floating offehane wind forme		

- Design of inter array cableing for floating offshore wind farms
- Floating O&M platforms for offshore wind •
- In collaboration with Windrad Engineering wind turbine design •

Traditio et Innovatio

Example #1: Universal Buoyancy Bodies

Universal buoyancy bodies:

- Reduced costs
- Applicable for different floaters etc.
- D ~ 16.5m | H ~ 30m

20

25.01.2018 © 2018 UNIVERSITY ROSTOCK | Faculty of Mechanical Engineering and Marine Technology

Example #2: Adapted gravity stabilized (Spar Buoy)

Example #3: Optimized mooring line stabilized (TLP)

Ultra-High-Performance-Concrete (UHPC)

- Compressive strength: 80 500 Mpa
- Tensile strength: 3 20 MPa
- Flexural strength (reinforced): 5 75 MPa
- Fracture energy: 50 90 kN/m
- Crack width: << 0.1 mm
- Carbonating: 1.5 mm after 3 years
- Water pen. depth.: not measurable
- <u>Chloride-diffusion: not measurable</u>
- Weight: 1.5 2.7 t/m³
- Cost: 400€/t (steel > 3000€/t)

Prepared by:

Project TEAM Floating Offshore Foundation

University Rostock

Dr.-Ing. Frank Adam

Frank.Adam@uni-rostock.de Albert-Einstein-Str. 2 D-18059 Rostock Phone: +49 (0) 174 3236545

