

eFuels aus der Sicht der Industrie

Manfred Waidhas, Siemens AG, Hydrogen Solutions

© Siemens AG 2018

siemens.com/silyzer

Becoming serious – CO₂-emission reduction targets DE

Electricity sector (target: -92.5%)

Mobility (target: -92.5%)

Industry (target: -81%)

Agriculture (target: -60%)

ludwia bölkow

Households/SMEs (target: -92.5%) Treibhausgasemissionen Haushalte/GHD*, 1990 - 2015

Source: Agora Energiewende, 20.09.2016

Renewable power generation technologies becomes cost competitive

source:http://cleantechnica.com,16.04.2016

Unrestricted © Siemens AG 2018 Page 3 March 2018 Most recent electricity contracts in Middle East are below 24 USD/MWh (e.g. Saudi-Arabia: 17.8 USD/MWh)

 Many countries with low electricity costs are highly interested to invest in green P2X technologies

Renewable power generation Extension and smart storage concepts essential

Unrestricted © Siemens AG 2018 Page 4 March 2018

- 1. CO_2 -reduction is clearly linked with renewables.
- 2. Enforced extension of renewables is mandatory to reach defined CO_2 reduction targets

Energy storage capacities in the TWh-range will be needed

Different storage technologies for different applications – Hydrogen for large-scale and long-term energy storage

1) such as Ammonia, Methanol or others; 2) Compressed Air Energy Storage; 3) Li-Ion, NaS, Lead Acid, etc.

Unrestricted © Siemens AG 2018

Page 5 March 2018

Siemens Hydrogen Solutions

SIEMENS

Electrical Energy Storage

The common understanding has to be re-defined

Conversion Conversion **Energy input Storage Energy output** "in" "out" the classic view: Electricity **Battery** Electricity the hydrogen view: Turbine Electricity Fuel cell Electrolysis Hydrogen Electricity Burner Heat Reactor Chemicals Unrestricted © Siemens AG 2018

Page 6 March 2018

Siemens Hydrogen Solutions

SIEMENS

Hydrogen is multi-functional It connects Energy, Mobility and Industry

Volatile electricity Grid **Conversion/ storage Applications** generation integration Exports for different applications Photovoltaic H₂ generation +++Industry M_{M} H2 Mobility **PEM electrolysis** Wind power Energy

Unrestricted © Siemens AG 2018 Page 7 March 2018

Siemens Hydrogen Solutions

SIEMENS

Hydrogen is multi-functional It connects Energy, Mobility and Industry

Volatile electricity Grid **Conversion/ storage Applications** generation integration Exports for different applications Photovoltaic H₂ generation Industry າທາ Hydrogen for ammonia production, petroleum refinement, MMH2 metal production, flat glass, etc. **Mobility** Hydrogen as alternative fuel or as feedstock for synthetic fuels **PEM electrolysis** Wind power Energy Hydrogen blending (gas grid) Remote energy supply/Off-grid

SIEMENS

Green (CO₂-free) hydrogen: a broad variety of potential applications

* Besides these: glass, semiconductor, food&beverage

Unrestricted © Siemens AG 2018 Page 9 March 2018

Siemens Hydrogen Solutions

SIEMENS

The different use cases for green hydrogen...follow a `merit order´principle

current H ₂ market prices			
mobility	~ 4 – 10 USD/kg		
industry	~ 1,4 – 5 USD/kg		
energy	~ 0,7 – 1 USD/kg		

SIEMENS

Ingenuity for life

- Compared to re-electrification ("power to power") the use of hydrogen in industry or mobility leads more easily to a positive business case.
- The three use cases have different maturity, market potential and market starting points.

Unrestricted © Siemens AG 2018 Page 10 March 2018

Unrestricted ©	Siemens AG	2018
Page 11	March	2018

E fuels: tightly connected with availability of CO2 sources

* Besides these: glass, semiconductor, food&beverage

Unrestricted © Siemens AG 2018 Page 12 March 2018

- Heavy duty, long distance transport, especially aviation and marine transport require fuels with high volumetric energy density.
- High volumetric energy density can only be achieved by carbon based fuel.
- The production of eFuels requires a CO2 source as feedstock in order to be CO2-neutral.
- Availability and costs of suited CO2 supply are essential for related business cases
- Electrolyzer technology in the GW range will be required. Up-sizing is mandatory but no critical technical hurdles are expected.
- Low RE electricity prices are the key enabler.

Overall process efficiency decreases when hydrogen is further converted in downstream synthesis plants

SIEMENS Ingenuity for life

source: Alexander Tremel, Siemens AG

Unrestricted © Siemens AG 2018

Page 13

March 2018

Methanol is liquid synthesis product with already good fit to existing infrastructure and relatively low cost

source: Alexander Tremel, Siemens AG

Multi-objective product evaluation based on quantitative and qualitative parameters (starting point: hydrogen)

Summary: Methanol with highest score

- Evaluation based on green field plant without existing infrastructure (exception see footnote)
- Detailed evaluation is site and costumer specific and may result in deviating outcome

Total score (0-10 points):

Based on: Tremel et al. (2015), Int J Hydrogen Energy 40, 11457-11464, http://dx.doi.org/10.1016/j.ijhydene.2015.01.097

Unrestricted © Siemens AG 2018 Page 14 March 2018

The story will not end with the Silyzer 200/300 – ... we are targeting >100 MW

Silyzer portfolio roadmap

Page 15 March 2018

Project scope and key facts Development of an decentralized hydrogen energy storage plant

- Location: Mainz (Germany)
- Partners Stadtwerke Mainz, Linde, Siemens, RheinMain University
- Connected to a wind-farm (8 MW)
- 6 MW peak electrolyzer (3 stacks, each 2 MW)
- 1000 kg H₂ storage (33 MWh)
- 200 tons H₂ target annual output
 - Injection in local gas grid
 - Multi-use trailer-filling
- Funding: ~50% (BMWi)
- Timeline: 10/2012 12/2016

Source: Wikipedia

Source: Energiepark Mainz

Gefördert durch

SIEMENS

aufgrund eines Beschlusses des Deutschen Bundestages

Forschungsinitiative der Bundesregierung

ENERGIE PARK MAINZ

Energiepark Mainz – Status Electrolyzer system

1.200 120% · Efficiency evaluations under consideration of overall
 \$40%
 \$608

 \$System efficiency (HHV)
 \$608
 Hydrogen production [Nm³/h] 1.000 purchased electricity and measured H2 production (outlet 800 electrolyzers) • Data obtained by 600 Δ measurements in Oct 2015 400 C x 200 20% × 0% 1.000 2.000 3.000 4.000 5.000 6.000 7.000 Purchased power Energiepark Mainz [kW] Bundesministerium für Wirtschaft und Energie **ENERGIESPEICHER** chschule RheinMain liversity of Applied Scier Ein Forschungsprojekt von Linde SIEMENS Gefördert durch STADTWERKE MAINZ AG Forschungsinitiative der Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages

 H_2 production (tion \blacktriangle V efficiency

H2FUTURE

Hydrogen from electrolysis for low carbon steelmaking

Project Consortium:

- **Verbund** (*utility/grid operator in AT = Electricity provider*)
- **VoestAlpine** (steel manufacturer = Hydrogen consumer)
- **ECN** (Energy Research Centre of the NLD)
- Siemens Hydrogen Solutions (Technology provider)

Unrestricted © Siemens AG 2018 Page 18 March 2018

Project description:

EU funded project to show viability of a PEM electrolyzer as flexible load for grid services. Hydrogen used within the steel making/processing to reduce CO_2 foot-print.

Time line:

Jan. 2017 – Jun. 2021

Electrolyzer:

- 6 MW rated power
- new cell and stack design
- designed for power range of ≈ 10 100 Megawatt

More details:

http://www.h2future-project.eu

Summary

- CO₂-reduction targets are clearly linked with renewables. Decreasing generation costs foster new business opportunities
- Power to X concepts will be essential to reach CO₂ reduction targets.
 H2 via electrolysis is a key element for sector coupling.
- The de-fossilation of the mobility sector provides specific challenges. In particular heavy duty transport and aviation require 'power supplies' with high volumetric energy density.
- Electricity-based liquid fuels are a major option for above mentioned area. Technical solutions are / will be available.
- However, any market outlook is uncertain since political targets and market regulations are hardly to predict.

Contact page

Dr. Manfred Waidhas

Hydrogen Solutions

Guenther-Scharowsky-Str. 1 91058 Erlangen

Mobile: +49 173 289 42 02

E-mail: <u>manfred.waidhas@siemens.com</u>

siemens.com/silyzer

Unrestricted © Siemens AG 2018 Page 20 March 2018