Neue Möglichkeiten für geophysikalische Exploration und Monitoring mit ortsverteilten akustischen Messungen

Jan Henninges

Deutsches GeoForschungsZentrum GFZ

Herbstsitzung AK Energie DPG / DEGA, Bad Honnef, 18.10.2018

Motivation

- Subsurface technologies to reduce CO₂ emissions during energy production:
 - Geothermal energy (heat, chill, storage)
 - Geological storage of CO₂
- Requirements: exploration of the geological subsurface, monitoring of changes and processes during utilization
- Frequently used: acoustic methods (e.g. reflection seismology, passive seismic monitoring)
- Aims for data acquisition:
 - Improve capabilities
 - Reduce cost

Outline

- Introduction
 - Motivation, acoustic methods in geophyiscs, conventional sensors
 - Distributed Acoustic Sensing (DAS) method
- Case studies
 - Vertical seismic profiling in boreholes
 - Ketzin: permanent sensor cables
 - Groß Schönebeck: wireline deployment
 - Passive recording using suface cables
 - Seismological investigations in Reykjanes (Iceland)

Exploration: reflection seismology

Knödel et al. (1997)

Recorded seismic signals: image of subsurface structures Receivers in borehole: vertical seismic profiling (VSP)

Monitoring of (induced) seismicity

M. Kendall et al., University of Bristol

(passive) recording of acoustic emissions: localization Events: natural earthquakes, or induced (fluid movement)

Acoustic sensors for geophysics Geophones: record particle motion (velocity, acceleration)

© Foto: A. Schuck, GGL GmbH

© Foto: J. Kück, GFZ/ICDP-OSG

DAS: Method and applications

- Measurement technique, characteristics:
 - acquisition of acoustic signal along sensor cable
 - main advantages: easier to deploy, many measurement points
 - length: up to 10s of km, spatial resolution: ~ 10 m, sampling frequency: 1 m, 1 kHz
 - sensor: optical fiber
 - opto-electronic surface readout unit
- History, Applications:
 - technical concept: early 1990s
 - intrusion detection (~2005)
 - gephysics (>2011), borehole seismic (VSP), flow monitoring (production and injection profiling), microseismic monitoring, surface seismic
- Current R&D subjects:
 - sensitivity (e.g. s/n, directivity), signal processing, hardware

Method: Rayleigh Scattering

- Inhomogeneities within glass of optical fiber core
- from fiber drawing process Rayleigh - randomly distributed Scattering give rise to Rayleigh scattering Fiber Incident Optic Light Core Inhomogeneities

Courtesy A. Masoudi, Univ. of Southampton

Method: OTDR

• As a pulse of light propagates through an optical fiber, a small portion of the scattered light propagates backward.

Courtesy A. Masoudi, Univ. of Southampton

Method: Phase-OTDR

• Phase-OTDR is an OTDR technique which relies on the phase of the backscattered light.

- The phase of the backscattered light changes as the fiber is stretched.
- The strain rate can be measured by comparing the phase difference between the backscattered light from two regions (e.g. Masoudi et al., 2013).

GFZ

Helmholtz Centr

Ketzin pilot site, schematic cross section

Modified after Martens et al. (2015)

In-situ laboratory for geological storage of CO_2 in a saline aquifer

25 km West of Berlin, Germany

Target reservoir: Sediments of Upper Triassic Stuttgart formation

Depth 630-650 m

5 wells: 1 injection, 3 deep and 1 shallow observation well.

Deployment/equipment: Installation of permanent downhole sensor cable

- Permanent installation
 - Tubing-deployed, or behind casing.
 - Sensor cable: Protect fiber from mechanical and chemical influences. steel tube, with additional jacketing (plastic, steel). May contain several fibers for different sensing techniques.
 - Cable clamps: Attach cable to tubing/casing, protection (centralization).
 - Mechanical coupling determined by annular fill (gas, liquid, cement), and well completion (number of casing strings, cementing).

AFL Telecommunications

150 ° C, 20.000 psi Tube: 316SS,Incoloy OD 6.35 mm (1/4")

Permanent sensor cables behind casing: Ktzi 203

DAS-VSP survey Ketzin

4 wells with sensor cables installed behind casing

Ktzi 202

DAS recording in all wells simultaneously (Silixa)

22 22 2

Ktzi 203

Ktzi 201 injection well

> Seismic source: Vibro-truck Mertz M12

Example DAS profile along senor cable

Zero-offset Ktzi 200: influence of completion

Comparison of DAS and conventional sensors

DAS-VSP Ketzin: 3D depth migration

Left: amplitude maps Top Stuttgart (630 m, see arrow in profiles.

Right: cross sections 3D surface seismic and DAS-VSP (bandpass filtered, raw).

Blue curve: acoustic impedance from log data, Ktzi201 well.

Better/more detailed imaging of target layer with DAS-VSP data. Coverage could be improved by optimizing source locations.

In-situ geothermal lab Groß Schönebeck

Completion and production string Gt GrSk 4/05

Total depth 4400 m

Deviated > 2780 m

Perforation intervals 4118 – 4389 m

Production string with pump at 1200 m Y-Tool: Access with logging tools during production

GFZ hybrid wireline logging system

Henninges et al. (2011), 73rd EAGE Conference & Exhibition

3,5 t tractive force 2 x 5,500 m logging cable: standard 4conductor and hybrid with optical fibers

Production logging tools: pressure, temperature, spinner flow meter Depth correlation: gamma ray, casing collar locator Operations: Motion

DAS-VSP survey: geometry, schedule

Survey design: 61 VPs, spiral pattern around target zone, some far offset positions. 2 receiver wells, 4300 m deep.

Schedule: Day 0: Start-up test (sweep parameters, slack test). Day 1-3: 3 x 20 VPs.

Study area: North-East German Basin, 40 km N of Berlin.

DAS-VSP field work Feb 15-18, 2017

Seismic sources: 4 vibro trucks (DMT) Wireline operations (SLB, GFZ)

VSI tool: 3C accelerometer (SLB)

2 hDVS acquisition units (SLB)

ZOVSP, well logs & geology GrSk3

Stiller et al. (2018)

IMAGE seismic network

Reykjanes peninsula, SW Iceland

- deployed in 2014 (GFZ + ÍSOR):
- 20 broadband stations,
 10 short-period sensors
- 24 ocean bottom seismometers
- recording for > 1 year
- DAS survey: borehole installation, surface cable (connect to existing 15 km data cable)
- 150 additional shortperiod sensors in vicinity of DAS cables

26

DAS monitoring at Reykjanes/Iceland (IMAGE)

Example from surface cable DAS field data

Network: IMAGE - Surface Cable [] - (310 traces / 2015-03-23T16:06:33.658)

Summary

Distributed acoustic sensing opens up **new possibilities for** geophysical exploration and monitoring.

- Advantages: ruggedized, high temperature tolerance, easy to deploy. Distributed methods: high spatial and temporal resolution over long distances. Time and cost effective!
- Challenges: lower signal-to-noise ratio, directional sensitivity, very large data volumes. Deployment: coupling of sensor cable.
 Development of custom processing methods, improved understanding of signal characteristics required.
- Need for **research**: ongoing and future projects.

Thank you for your attention!

Acknowledgements:

Field work: J. Schrötter, M. Poser, C. Cunow (GFZ Section 6.2 Geothermal Energy Systems).

Ketzin: J. Götz, S. Lueth (GFZ Section 6.3 Geological Storage), service companies: Silixa Ltd., DMT.

Groß Schönebeck: E. Martuganova (GFZ 6.2), M. Stiller, K. Bauer (GFZ Section 2.7 Near-surface Geophysics), service companies: Schlumberger, DMT, GGL, GGD.

Iceland: T. Reinsch, P. Jousset (GFZ 6.2)

Funding:

CO2MAN: German Federal Ministry for Education and Research (BMBF). CO2CARE, IMAGE: European Commission FP7. RissDom-A: German Federal Ministry for Economic Affairs and Energy (BMWi)

References

Götz J, Lüth S, Henninges J, Reinsch T (2015) Using a fibre optic cable as Distributed Acoustic Sensor for Vertical Seismic Profiling at the Ketzin CO₂ storage site. Conference Proceedings, 77rd EAGE Conference & Exhibition, Madrid, Spain (CD-ROM). doi: 10.3997/2214-4609.201413363

Götz J, Lüth S, Henninges J, Reinsch T (2018) Vertical seismic profiling using a daisy-chained deployment of fibre-optic cables in four wells simultaneously – Case study at the Ketzin carbon dioxide storage site. Geophys Prospect 66: 1201–1214. doi: 10.1111/1365-2478.12638

Henninges J, Baumann G, Brandt W, Cunow C, Poser M, Schrötter J, Huenges E (2011) A novel hybrid wireline logging system for downhole monitoring of fluid injection and production in deep reservoirs. Conference Proceedings, 73rd EAGE Conference & Exhibition, Vienna, Austria (CD-ROM):C043

Jousset P, Reinsch T, Ryberg T, Blanck H, Clarke A, Aghayev R, Hersir GP, Henninges J, Weber M, Krawczyk CM (2018) Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nature Communications 9 (1):2509. doi:10.1038/s41467-018-04860-y

Martens S, Conze R, De Lucia M, Henninges J, Kempka T, Liebscher A, Lüth S, Möller F, Norden B, Prevedel B, Schmidt-Hattenberger C, Szizybalski A, Vieth-Hillebrand A, Würdemann H, Zemke K, Zimmer M (2015) Joint Research Project CO₂MAN (CO₂MAN Reservoir Management): Continuation of Research and Development Work for CO₂ Storage at the Ketzin Pilot Site. In: Liebscher A, Münch U (eds) Geological Storage of CO₂ – Long Term Security Aspects. Advanced Technologies in Earth Sciences. Springer International Publishing, pp 1-32. doi:10.1007/978-3-319-13930-2_1

Masoudi A, Belal M, Newson TP (2013) A distributed optical fibre dynamic strain sensor based on phase-OTDR. Meas Sci Technol 24 (8):085204

Moeck I, Kwiatek G, Zimmermann G (2009) Slip tendency analysis, fault reactivation potential and induced seismicity in a deep geothermal reservoir. J Struct Geol 31 (10):1174-1182

Stiller M, Krawczyk C, Bauer K, Henninges J, Norden B, Huenges E, Spalek A (2018) 3D-Seismik am Geothermieforschungsstandort Groß Schönebeck. bbr - Fachmagazin für Brunnen- und Leitungsbau (1):84-91

