Solare Energiesysteme im Sonnengürtel: Neue Entwicklungen

Bernhard Hoffschmidt

AKE, 21.03.2019 Bad Honnef

Inhalt

- CSP Technologie
- Kosten- und Marktentwicklung
- CSP 4.0
- Hochtemperaturpartikelreceiver
- Hybridkraftwerke
- Wärmespeicherkraftwerke

Inhalt

CSP Technologie

- Kosten- und Marktentwicklung
- CSP 4.0
- Hochtemperaturpartikelreceiver
- Hybridkraftwerke
- Wärmespeicherkraftwerke

DLR.de · Chart 4

Große thermische Speicher in solarthermischen Kraftwerken entwickelt und erprobt

DLR.de · Chart 5

Thermal Storage vs. Electric Storage

Inhalt

- CSP Technologie
- Kosten- und Marktentwicklung
- CSP 4.0
- Hochtemperaturpartikelreceiver
- Hybridkraftwerke
- Wärmespeicherkraftwerke

CSP PPA Sales Price

DLR

CSP Market

Inhalt

- CSP Technologie
- Kosten- und Marktentwicklung
- CSP 4.0
- Hochtemperaturpartikelreceiver
- Hybridkraftwerke
- Wärmespeicherkraftwerke

Solarthermische Kraftwerke sind komplexe Systeme

- 110 MW
- 10 h Speicher
- > 10.000 Heliostate á 115 m²
- Turmhöhe 195 m
- 500 GWhe Jahresproduktion (entspricht ca. 200 MW PV)

Stand der Technik

x 10⁴ x 10⁴ Fluxdensity in W/m² Fluxdensity in W/m² 0.5 0.5 2 2 1.8 1.8 0 0 1.6 1.6 1.4 1.4 -0.5 -0.5 1.2 1.2 y (vertical) in m y (vertical) in m 1 1 0.8 0.8 0.6 0.6 -1.5 -1.5 0.4 0.4 0.2 0.2 -2 -2 0 0 -2 -1.5 -0.5 0 0.5 -2 -1.5 -1 -0 x (horizontal) in m -0.5 0 0.5 -1 x (horizontal) in m Simulation basiert auf statistischen Fehlerannahmen gemessen Geringe Übereinstimmung zwischen Simulation und Messung

Gemessene und simulierte Strahlungsflussverteilung eines einzelnen Heliostaten

Berücksichtigung der Reflektorform mittels Deflektometrie

Automatisches Deflektometrie Messsystem

- Automatische Auswahl der Heliostaten
- Automatische Messung und Auswertung
- Messintervall: ~60sec./hel.

Validierung durch Vergleich von Messung und Simulation

DLR.de • Chart 16

Zielpunkt Optimierung @ Solar Tower Jülich

Referenz Fall Erfahrung des Operators Leistung = 100%

Intercept Optimierung

✓ Power Output 111.31 %

Messung der Strahlungsflussdichte auf einem großen Receiver

- Große Receiver ohne Target, das durch den Strahlengang gefahren wird.
- Strahlungsflussmessung auf Receiveroberfläche bislang sehr ungenau
- Neues Verfahren mit Genauigkeit < 8%

DLR.de • Chart 18

DLR

Was passiert bei Wolkendurchgängen?

Bestimmung von Heliostatfeldverschattungen mittels Wolkenkameras

Schattenkamerasysteme zur Validierung der Wolkenmodelle

Standard Überwachungskamera

Schattenkamerabild (4 pro Minute)

Orthoimage (5m per pixel)

QFly – Drohnen sind ein Schlüssel zur schnellen Analyse großer Solarfelder

DLR.de · Chart 22

QFly – Überflug einer Parabolrinne Raw Data

DLR

Messprinzip Verzerrter Reflex des Absorberrohrs erlaubt Bestimmung von Formfehlern

Evaluation

Inhalt

- CSP Technologie
- Kosten- und Marktentwicklung
- CSP 4.0

Hochtemperaturpartikelreceiver

- Hybridkraftwerke
- Wärmespeicherkraftwerke

Challenges and Objectives

Research Question 1

Can ceramic particles be used as efficient heat transfer media at T >650°C to achieve η_{sys} >20%?

- CentRec[®] system concept and performance modelling
- Particle flow: theory, model, experiments
- Design of 500 kW receiver
- First results from 500 kW receiver test

Infrastructure:

Solar receiver test platform @Juelich Solar Power Tower

Result: Concept of Particle Receiver

Bauxite particles

- Cheap (500 1000 €/t)
- Stable >1000°C
- Direct absorption
- Direct storage

CentRec® rotating receiver concept

- · Residence time controlled by rotational speed
- Cylinder walls isolated by particle layer

Results: Particle Receiver – detailed modelling

Results: How to achieve Homogeneous Particle Flow

- One- or two-phase flow depending on layer thickness
- Avalanches below critical mass flow
- Flow characteristics depend on
 - Mass flow,
 - Surface roughness,
 - Particle diameter and roughness
 - Inclination angle
- No models available in literature to predict flow conditions

Results: 500 kW Receiver Design and Testing

Risk of "avalanches" avoided by design:

- Thin particle film regime (1-phase flow)
- Profiled wall surface structure
- Periodic modulation of rotation speed

Integration into Juelich Solar Tower: 05/2017

- Begin of solar testing: 24/09/2017
- Test campaign 2018 : 60 hours of solar operation
- Maximum particle exit temperature: 965°C

DLR.de • Chart 33

Outlook

Particle Receiver Concept

- Industrial interest attracted:
 - Development of all critical components
 - 1MW_{th} complete system test starting 2020 @Juelich Solar Tower
 - Partner: German industry consortium and DLR spin-off company
- IEA SolarPACES: working group established to benchmark technology
- Longer term:
 Chemically active particles for thermochemical solar fuels production

Inhalt

- CSP Technologie
- Kosten- und Marktentwicklung
- CSP 4.0
- Hochtemperaturpartikelreceiver
- Hybridkraftwerke
- Wärmespeicherkraftwerke

DLR.de · Chart 35

Hybride erneuerbare Systeme ermöglichen einen kostengünstigen und flexiblen Betrieb

DLR.de • Chart 36

Photovoltaic Plant

100 MW 392,000 PV panels Single-axis tracker 300 hectares

In Operation

DLR.de • Chart 37

CSP Plant

110 MW 10,600 heliostats,140 m² each Tower of 243 meters

17.5 hours of storage In Construction

A Landmark Project

First CSP plant in Latin America PPAs competitively awarded in 2014 Overcame many external challenges Under construction Expected COD – May 2020 E R R O

MINADOR

Hybridtechnologie kann Energieerzeugungskosten senken

- Eine kürzlich von NREL und der Colorado School of Mines durchgeführte Analyse zeigte eine vielversprechende Verbesserung der Kosten und der Leistung für einen Standort im Norden Chiles
- Wann sind Hybridanlagen sinnvoll?
 - Wenn Kapazität und Zuverlässigkeit wichtig sind und diese vergütet werden
 - Wenn sowohl die Tages- als auch die Nachtproduktion wertvoll sind
- Wann sind Hybriden nicht sinnvoll?
 - Wenn der Zeitpunkt oder die Konsistenz der Produktion nicht wichtig ist
- Hybridanlagen erfordern Methoden zur Optimierung des Zeitpunkts der Energieerzeugung aus jedem Teilsystem

Inhalt

- CSP Technologie
- Kosten- und Marktentwicklung
- CSP 4.0
- Hochtemperaturpartikelreceiver
- Hybridkraftwerke
- Wärmespeicherkraftwerke

DLR.de · Chart 40

CSP Kraftwerk

η = **75%**

Wärmespeicherkraftwerk der 1. Stufe (40 % Wirkungsgrad)

Wärmespeicherkraftwerke liefern mit geringer fossiler Zufeuerung die notwendige Versorgungssicherheit

Wärmespeicherkraftwerk der 2. Stufe (70 % Wirkungsgrad)

Wärmespeicherkraftwerke liefern mit geringer fossiler Zufeuerung die notwendige Versorgungssicherheit

Pilotanlage in einem der RWE Kohlekraftwerke (Reallabor)

Wärmespeicherkraftwerke (WSK) nehmen Variable Regenerative Elektrizität (VRE) aus dem Netz und liefern Dargebots-unabhängige Regenerative Elektrizität (DRE) in das Netz

Beispiel: Photovoltaikstrom deckt Grundlastbedarf

DLR.de • Chart 46

DLR