Solare Energiesysteme im Sonnengürtel: Neue Entwicklungen

Bernhard Hoffschmidt

AKE, 21.03.2019 Bad Honnef

Inhalt

- CSP Technologie
- Kosten- und Marktentwicklung
- CSP 4.0
- Hochtemperaturpartikelreceiver
- Hybridkraftwerke
- Wärmespeicherkraftwerke

Inhalt

CSP Technologie

- Kosten- und Marktentwicklung
- CSP 4.0
- Hochtemperaturpartikelreceiver
- Hybridkraftwerke
- Wärmespeicherkraftwerke

Große thermische Speicher in solarthermischen Kraftwerken entwickelt und erprobt

Thermal Storage vs. Electric Storage

Inhalt

- CSP Technologie
- Kosten- und Marktentwicklung
- CSP 4.0
- Hochtemperaturpartikelreceiver
- Hybridkraftwerke
- Wärmespeicherkraftwerke

CSP PPA Sales Price

PPA sales price development for CSP vs. GT combined cycle & EEX

Source: IA Tech GmbH

CSP Market

Source: IA Tech GmbH

Inhalt

- CSP Technologie
- Kosten- und Marktentwicklung
- CSP 4.0
- Hochtemperaturpartikelreceiver
- Hybridkraftwerke
- Wärmespeicherkraftwerke

Solarthermische Kraftwerke sind komplexe Systeme

- 110 MW
- 10 h Speicher
- > 10.000 Heliostate á 115 m²
- Turmhöhe 195 m
- 500 GWhe Jahresproduktion (entspricht ca. 200 MW PV)

Stand der Technik

Gemessene und simulierte Strahlungsflussverteilung eines einzelnen Heliostaten

Geringe Übereinstimmung zwischen Simulation und Messung

Berücksichtigung der Reflektorform mittels Deflektometrie

<u>Automatisches Deflektometrie Messsystem</u>

- Automatische Auswahl der Heliostaten
- Automatische Messung und Auswertung
- Messintervall: ~60sec./hel.

Validierung durch Vergleich von Messung und Simulation

Messung

Simulation

Zielpunkt Optimierung @ Solar Tower Jülich

Referenz Fall
Erfahrung des Operators
Leistung = 100%

Intercept Optimierung
Power Output 111.31 %

Messung der Strahlungsflussdichte auf einem großen Receiver

- Große Receiver ohne Target, das durch den Strahlengang gefahren wird.
- Strahlungsflussmessung auf Receiveroberfläche bislang sehr ungenau
- Neues Verfahren mit Genauigkeit < 8%

Was passiert bei Wolkendurchgängen?

Bestimmung von Heliostatfeldverschattungen mittels Wolkenkameras

Cloud height can be derived if $v_{pixel/s}$ and $v_{m/s}$ are known

Time t_2

$$h = \frac{v (t_2 - t_1)}{\cot(\boldsymbol{\beta_1}) - \cot(\boldsymbol{\beta_2})}$$

Schattenkamerasysteme zur Validierung der Wolkenmodelle

QFly – Drohnen sind ein Schlüssel zur schnellen Analyse großer Solarfelder

QFly – Überflug einer Parabolrinne Raw Data

Messprinzip Verzerrter Reflex des Absorberrohrs erlaubt Bestimmung von Formfehlern

Evaluation

Inhalt

- CSP Technologie
- Kosten- und Marktentwicklung
- CSP 4.0

Hochtemperaturpartikelreceiver

- Hybridkraftwerke
- Wärmespeicherkraftwerke

Challenges and Objectives

- High Concentration + High Temperature = High Efficiency = Low Cost
- Advanced heat transfer media needed for:
 - High temperature operation
 - Efficient storage integration

→ Break todays temperature limit

Advanced Salt T_{max} > 600°C

of 400°C (trough) / 560°C (tower)
nced Salt Particles Liquid Metal $T_{max} > 900$ °C

 $T_{\text{max}} > 800^{\circ}\text{C}$

Third party funding

Helmholtz Funding

Research Question 1

Can ceramic particles be used as efficient heat transfer media at T >650°C to achieve η_{sys} >20%?

- CentRec® system concept and performance modelling
- Particle flow: theory, model, experiments
- Design of 500 kW receiver
- First results from 500 kW receiver test

Infrastructure:

Solar receiver test platform

@Juelich Solar Power Tower

Result: Concept of Particle Receiver

Bauxite particles

- Cheap (500 1000 €/t)
- Stable >1000°C
- Direct absorption
- Direct storage
- Low cost to move

CentRec® rotating receiver concept

- Residence time controlled by rotational speed
- Cylinder walls isolated by particle layer

Results: Particle Receiver – detailed modelling

Results: How to achieve Homogeneous Particle Flow

- One- or two-phase flow depending on layer thickness
- Avalanches below critical mass flow
- Flow characteristics depend on
 - Mass flow,
 - Surface roughness,
 - Particle diameter and roughness
 - Inclination angle
- No models available in literature to predict flow conditions

Results: 500 kW Receiver Design and Testing

Risk of "avalanches" avoided by design:

- Thin particle film regime (1-phase flow)
- Profiled wall surface structure
- Periodic modulation of rotation speed

Integration into Juelich Solar Tower: 05/2017

- Begin of solar testing: 24/09/2017
- Test campaign 2018 : 60 hours of solar operation
- Maximum particle exit temperature: 965°C

Outlook

Particle Receiver Concept

- Industrial interest attracted:
 - Development of all critical components
 - 1MW_{th} complete system test starting 2020 @Juelich Solar Tower
 - Partner: German industry consortium and DLR spin-off company
- IEA SolarPACES: working group established to benchmark technology
- Longer term:
 Chemically active particles for thermochemical solar fuels production

Inhalt

- CSP Technologie
- Kosten- und Marktentwicklung
- CSP 4.0
- Hochtemperaturpartikelreceiver
- Hybridkraftwerke
- Wärmespeicherkraftwerke

Hybride erneuerbare Systeme ermöglichen einen kostengünstigen und flexiblen Betrieb

Concentrating solar power (CSP)

PV plus battery

Photovoltaic Plant

CERRO DOMINADOR

100 MW
392,000 PV panels
Single-axis tracker
300 hectares
In Operation

CSP Plant

110 MW

10,600 heliostats,140 m² each

Tower of 243 meters

17.5 hours of storage

In Construction

Hybridtechnologie kann Energieerzeugungskosten senken

- Eine kürzlich von NREL und der Colorado School of Mines durchgeführte Analyse zeigte eine vielversprechende Verbesserung der Kosten und der Leistung für einen Standort im Norden Chiles
- Wann sind Hybridanlagen sinnvoll?
 - Wenn Kapazität und Zuverlässigkeit wichtig sind und diese vergütet werden
 - Wenn sowohl die Tages- als auch die Nachtproduktion wertvoll sind
- Wann sind Hybriden nicht sinnvoll?
 - Wenn der Zeitpunkt oder die Konsistenz der Produktion nicht wichtig ist
- Hybridanlagen erfordern Methoden zur Optimierung des Zeitpunkts der Energieerzeugung aus jedem Teilsystem

Inhalt

- CSP Technologie
- Kosten- und Marktentwicklung
- CSP 4.0
- Hochtemperaturpartikelreceiver
- Hybridkraftwerke
- Wärmespeicherkraftwerke

CSP Kraftwerk

$$\eta = 75\%$$

Wärmespeicherkraftwerk der 1. Stufe (40 % Wirkungsgrad)

Wärmespeicherkraftwerke liefern mit geringer fossiler Zufeuerung die notwendige Versorgungssicherheit

Wärmespeicherkraftwerk der 2. Stufe (70 % Wirkungsgrad)

Wärmespeicherkraftwerke liefern mit geringer fossiler Zufeuerung die notwendige Versorgungssicherheit

Pilotanlage in einem der RWE Kohlekraftwerke (Reallabor)

Wärmespeicherkraftwerke (WSK) nehmen Variable Regenerative Elektrizität (VRE) aus dem Netz und liefern Dargebots-unabhängige Regenerative Elektrizität (DRE) in das Netz

Beispiel: Photovoltaikstrom deckt Grundlastbedarf

