Elektrolyseure und Brennstoffzellen zur Bereitstellung und Nutzung von Wasserstoff in der Energiewirtschaft - Stand und Perspektiven

16.10.2019 Ludger Blum, Martin Müller

Forschungszentrum Jülich Institut für Energie und Klimaforschung IEK-3 / Elektrochemische Verfahrenstechnik I.blum@fz-juelich.de

Wasserstoff zur Speicherung und Nutzung erneuerbarer Elektrizität

Elektrolyseure und Brennstoffzellen.....

Inhalt

- Übersicht BZ- (Eignung für H₂-Betrieb) und Elektrolyse-Typen
- Status stationäre Brennstoffzellen
- Verschiedene Elektrolysetypen Weshalb / Weshalb nicht?
- Thermodynamik / Reaktionen
- Systemaspekte, Hersteller, Kostensituation
- Details zur SOE
- Weitere Möglichkeiten der SOE: Ko-Elektrolyse, reversibler Betrieb
- Ergebnisse 5/15 kW rSOC-Test
- SOC Aktivitäten weltweit, Reallaborprojekte in Deutschland
- Zusammenfassung und Ausblick

Übersicht BZ- (Eignung für H₂-Betrieb) und Elektrolyse-Typen

BZ	Тур	Elektrolyt	Temperatur- bereich	H ₂ -Betrieb	Elektrolyse
AFC	Alkaline Fuel Cell Alkalische BZ	hochkonzentrierte Kalilauge (6-7 M)	60 – 120°C	Ja	AEL
PEFC (PEM)	Polymer Electrolyte FC Polymerelektrolyt BZ	protonenleitende Kunststoffmembran	60 – 90°C	Ja	PEEL
PAFC	Phosphoric Acid FC Phosphorsäure BZ	hochkonzentrierte Phosphorsäure	200 - 250°C	Ja	
MCFC	Molten Carbonate FC Karbonatschmelze BZ	Gemisch aus Lithium- und Kaliumkarbonat	600 - 700°C	Nein	
SOFC	Solid Oxide FC Oxidkeramische BZ	sauerstoffionen- leitfähige Keramik (Zirkonoxid 8YSZ)	600 – 1000°C	Ja	SOE(C)

Status stationäre Brennstoffzellen

Anforderungen an ortsfeste Anwendungen

	"Mikro-KWK" Hausenergie- Versorgung	внкw	Dezentrale Stromversorgung	
Leistungsgröße	15 kW	101000 kW	1005000 kW	
Lebensdauer	> 10 a			
Betriebszeit der BZ	40.00080.000 h			
Elektrischer Wirkungsgrad	> 35 %	> 45 %	> 55 %	
Spezifische Zielkosten	3.000 €/kW _e	1000 - 1.500 €/kW _e	500 - 1.500 €/kW _e	
Zulässiger Leistungsverlust*	st* 0,130,25 % pro 1.000 h			

*) bestimmt durch 10 % Leistungsverlust während der gesamten Lebensdauer

Status stationäre Brennstoffzellen: Hausenergie (alle mit NG)

Systeme & Unternehmen	Viessmann / Hexis	Viessmann / Panasonic	SenerTec/Remeha ?	Herefore Constant - Store + Refore The Constant - Store + Ref	Panasonic	AISIN / Kyocera	
BZ - Тур	SOFC	PEFC	PEFC	SOFC	PEFC	SOFC	
Elektrische Leistung	1,0 kW	0,75 kW	0,75 kW	1,5 kW	0,75 kW	0,7 kW	
Thermische Leistung	1,8 kW	1 kW	1,1 kW	0,6 kW	1 kW	0,6 kW	
Elektrischer Wirkungsgrad	35 %	37 %	37 %	60 %	37%	53 %	
Gesamt- wirkungsgrad	95 %	92 %	92 %	85 %	92 %	87 %	
Anzahl Anlagen	> 300	> 2.000	?	> 1.000	> 250.000	> 50.000	
Lebensdauer Stack	7 – 8 Jahre	12 Jahre	80.000 h	>?	>?	> 70.000 h	
Preis	ca. 20.000 €	19.500 €	?	ca. 20.000 €	7.900€	9.950 €	
Institute of Energy and Climate Research – Electrochemical Process Engineering (IEK-3) 6							

Forschungszentrum

Status stationäre Brennstoffzellen: BHKW / dez. Stromvers.

Systeme & Unternehmen	Hydrogenics / C/US/D	Doosan Fuel Cell America	Bloom Energy / US	MHES / J	Convion / FI
BZ - Тур	PEFC – H ₂	PAFC – NG/H ₂	SOFC - NG	SOFC - NG	SOFC - NG
Elektrische Leistung	1.000 kW	200/400 kW	250 kW	250 kW	50 kW
Thermische Leistung	1.500 kW	215/500 kW	? kW	? kW	25 kW
Elektrischer Wirkungsgrad	> 50 %	40 % (<mark>NG</mark>)	52 %	52 %	> 55 %
Gesamt- wirkungsgrad	? %	90 % (<mark>NG</mark>)	? %	? %	82 %
Anzahl Anlagen	< 10	< 5 (NG: 400)	ca. 2.500	6	< 5
max. Betriebszeit	? h	80.000 h (NG)	? h	< 5.000 h	> 4.000 h

Ballard: 1.1 MW ClearGen[™] Anlage bei Toyota Motor Sales USA (TMS) (ev. 2 weitere Anl.) NedStack: 2011 eine 1 MW Anlage bei Solvay in Belgien und 2016 eine 2 MW Anlage in China bei Ynnovate Sanzheng

Institute of Energy and Climate Research– Electrochemical Process Engineering (IEK-3)

7

Stationäre Brennstoffzellen: Zwischenfazit

<u>μKWK</u>

- befindet sich im Hausenergiebereich in der Markteinführung:
 - EU: < 10.000 Anlagen installiert
 - Japan: > 300.000 Anlagen installiert
- PEFC und SOFC teilen sich den Markt
- Brennstoff: ausschließlich Erdgas grundsätzlich auch f
 ür H₂ geeignet, aber bislang keine Infrastruktur

KWK und dezentrale Stromerzeugung

- Steigender Bedarf, z.B. im Bereich Datencenter
- PEFC nur mit H₂ sinnvoll (erste Anlagen im MW-Bereich)
- PAFC und SOFC auch für H₂ geeignet, aber bislang kaum Nachfrage
- SOFC Anlagen von Bloom energy (ausschließlich mit Erdgas) beherrschen den Markt

Hochtemperatur-Elektrolyse – Weshalb?

Die <u>Vorteile</u> eines SOE-Systems beruhen im Wesentlichen auf der hohen Betriebstemperatur:

- ✤ Hohe Reaktionsgeschwindigkeit → geringe kinetische Verluste
 - \rightarrow Niedrige Betriebsspannung \rightarrow hoher Zellwirkungsgrad
- Keine Edelmetallkatalysatoren
- Einkopplung "kostenloser" Abwärme aus anderen Prozessen
 - \rightarrow hoher Systemwirkungsgrad
- ✤ Ko-Elektrolyse von H₂O und CO₂
 - \rightarrow Direkte Produktion von Synthesegas
 - → kein zusätzlicher Reaktor erforderlich
 - → hoher Wirkungsgrad möglich, vor allem wenn Abwärme des chemischen Reaktors zur Dampfproduktion im SOE-System verwendet werden kann
- Reversibler Betrieb (SOFC SOE) mit dem selben Stack möglich

Hochtemperatur-Elektrolyse – Weshalb nicht?

Die <u>Nachteile</u> eines SOE-Systems beruhen im Wesentlichen auf der hohen Betriebstemperatur:

- Baugröße wegen keramischem Elektrolyten begrenzt
 - → viele Stacks für große Leistung
- Aufheizzeiten im Bereich von Stunden
 - → geringere Dynamik (gilt nicht für Lastwechsel)
- Entwicklungsstand liegt hinter dem von PEEL und AEL

PEM-Elektrolyse (PEEL) gegenüber Alkalischer Elektrolyse (AEL)

- ✤ Höhere Leistungsdichten
- Keine heißen Kreisläufe mit hochkonzentrierte Kalilauge
- Durch Feststoffmembran Differenzdrücke möglich
- Bessere Dynamik und Teillastfähigkeit

Aber:

- Versorgungsproblem mit Iridium als Sauerstoffelektrode
- Weniger ausgereift als AEL
- ✤ Anlagenkosten (noch) höher als bei AEL
- ✤ Nachweis Langzeitstabilität noch zu erbringen

Temperaturabhängigkeit des Energiebedarfs für die Reduktionsreaktionen von H₂O

Reaktionsenthalpie von Wasserstoff bei Standarddruck

Temperaturabhängigkeit des Energiebedarfs für die Reduktionsreaktionen von CO₂

Reaktionsenthalpie von CO bei Standarddruck

Temperaturabhängigkeit des Energiebedarfs für die Reduktionsreaktionen von H₂O und CO₂

Im Temperaturbereich von 700°C – 900°C liegt die freie Reaktionsenthalpie der CO_2 Spaltung sehr nahe bei derjenigen von H_2O

Stack-Kennlinie (Elektrolyse- / Brennstoffzellenmodus)

Ofentemperatur: 750°C / 2,2 NI/min H₂ / 2,2 NI/min H₂O / 5,3 NI/min Luft

Kennlinien verschiedener Elektrolysetypen

- Potential für höchste Leistungsdichten bei PEEL
- Höchste Zellwirkungsgrade bei SOE

Schwarze K. et al., Fuel Cells (2019) 19(4)

Kennlinien verschiedener Elektrolysetypen

- Potential für Verbesserungen bei PEEL, z. B. durch dünnere Membranen
- Potential für Verbesserungen bei SOE, z. B. durch dünnere keram. Elektrolyte

Hersteller von alkalischen Elektrolysesystemen

(IEK-3 Recherche aus Datenblättern der Hersteller)

Hersteller	Тур	H ₂ Produktion	Betriebs- druck	Energie- verbrauch	Last
		m³/h (i.N.)	bar	kWh/m³ (i.N.)	%
Hydrogenics (Kanada)	HySTAT™ 30	12-30	10	4,9	40-100
McPhy (F)	Large H ₂ production units	100-400	30	4,5	25-100
Teledyne Energy Systems (China)	TITAN EL- 1400	78	7-10	-	-
Wasserelektrolyse Hydrotechnik (D)	EV 150	206	Atmosph.	4,6	20-100
NEL (N)	A-Series	3.880	Atmosph mit Verd. 200	4,4	15-100
ThyssenKrupp (D)	20 MW Module	4.000	0,3 bar	4,3	10-100

PEEL Systemaufbau und ausgewählte Hersteller

Beispiele für Multi-MW-Systeme

6 MW	Siemens (Mainz /D)
6 MW	Siemens (Linz /Austria)
10 MW	ITM (Köln /D)

Hersteller	Тур	Leistung	H ₂ Produktion	Betriebsdruck
		[kW]	[m³/h]	[bar]
Siemens / D	Silyzer 200	1250	225	35 (gleich)
Siemens / D	Silyzer 300	bis ~100 MW	bis 22.250	?
Proton Onsite / US/N	M200	1000	200	30 (Differenz)
ITM Power / UK	HGas1000	1030	214	80 (Differenz)
H-Tec / D	EL30	18	3,6	30 (Differenz)

Machbarkeitsstudie zur Elektrolyse:

https://www.tib.eu/de/suchen/id/TIBKAT%3A860345734/Zwanzig20-HYPOS-Machbarkeitsstudie-Elektrolyse/

PEEL: Kostenreduktion

Ansätze zur Reduktion der Investitionskosten:

- Weniger Edelmetalle
- Weniger Titan
- Hohe Leistungsdichte (z.B. dünnere Membranen) \rightarrow weniger aktive Fläche
- Kostengünstigere Leistungselektronik

Ansätze zur Reduktion der Betriebskosten:

- Höherer Wirkungsgrad
 - Arbeitstemperaturen steigern
 - Neue Katalysatoren
- Druckbetrieb
- Langzeitstabilität erhöhen

Investitionen für die Elektrolyse: Aktueller Stand und erwartete Entwicklung

Status 2019:

- → spezifische Investitionen liegen zwischen 1000 und 2500 €/kW_{el} (geringe Produktionsmengen)
- → Weitere Forschung und Entwicklung sowie Scale-up haben das Potenzial, die Kosten zu senken.

Kommende Jahre (2030):

- → Bottom-up-Kostenanalyse: Investitionskosten von 340-410 €/kW_{el} im Jahr 2030 sind möglich.
- → Inklusive: Stapel, Systemkomponenten, Gasverdichtung bis 100 bar, Land, Wohnen/Gebäude
- → Lebensdauer 10 Jahre (4.600 h/a)
- → Bei den Berechnungen werden aktuelle Entwicklungen und Erfolge in der Forschung berücksichtigt.

Die Kosten der installierten Wasserstofferzeugungsleistung liegen bei ~570 €/kW_{70%-LHV}

Institute of Energy and Climate Research– Electrochemical Process Engineering (IEK-3)

21

Elektrolyse – Systemwirkungsgrade

Heizwert des produzierten Wasserstoffs (LHV) bezogen auf den el. Input ins System:

$$\eta_{System_{1}} = \frac{H_{u}^{o}}{\frac{P_{DC}}{\eta_{GR}} + P_{eigen}}$$

Einschließlich Leistungsaufnahme des H₂ Kompressors:

$$\eta_{System_2} = \frac{{H_u}^o}{\frac{P_{DC}}{\eta_{GR}} + P_{eigen} + P_{Verd}}$$

Einschließlich Leistungsaufnahme des H₂ Kompressors und Hochtemperaturwärme:

$$\eta_{System_{3}} = \frac{H_{u}^{o}}{\frac{P_{DC}}{\eta_{GR}} + P_{eigen} + P_{Verd} + \dot{Q}_{HT}}$$

Einschl. Lstgsaufn. des H₂ Kompressors und Hoch- und Niedertemperaturwärme:

$$\eta_{System_4} = \frac{H_u^o}{\frac{P_{DC}}{\eta_{GR}} + P_{eigen} + P_{Verd} + \dot{Q}_{HT} + \dot{Q}_{Dampf}}$$

Institute of Energy and Climate Research– Electrochemical Process Engineering (IEK-3)

22

SOE-Elektrolysesystem mit Kathodenrezyklierung

Erste Vorkommerzielle Produkte durch Sunfire /D

SOE-Elektrolysesystem mit Kathodenrezyklierung

Effekt der Wärmebereitstellung auf den Wirkungsgrad

R. Peters, R. Deja, L. Blum, V.N. Nguyen, Q. Fang, D. Stolten,

Influence of operating parameters on overall system efficiencies using solid oxide electrolysis technology, International Journal of Hydrogen Energy, 40 (2015) 7103-7113.

SOE Stackperformance - Langzeitstabilität

Betriebszeit im Elektrolysemodus: ~19.000h

Spannungsdegradation ~ 0.6%/1000h

SOE Stackperformance - Langzeitstabilität

Degradation hauptsächlich verursacht durch den Anstieg des ohm'schen Widerstands, verursacht durch Ni-Verlust

Prinzip der Ko-Elektrolyse von Wasserdampf/CO2 (1:1) in einer SOEC

Anode $2O^{2-} \rightarrow O_2 + 4e^-$ Kathode $H_2O + CO_2 + 4e^- \rightarrow H_2 + CO + 2O^{2-}$

Gesamt

 $H_2O + CO_2 \rightarrow H_2 + CO + O_2$

Thermoneutrale Spannung (RT) = 1.360 V Reaktionswärme (Heizwert) $\Delta H^{0}_{H2O/H2} = +242 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta H^{0}_{CO2/CO} = +283 \text{ kJ} \cdot \text{mol}^{-1}$ (endotherm)

Reaktionen in einer SOEC

Reaktion		∆H [kJ/mol]
R1	$H_2O \rightarrow H_2 + \frac{1}{2}O_2$	242
R2	$CO_2 \rightarrow CO + \frac{1}{2}O_2$	283
R3	$CO_2 + H_2 \leftrightarrow CO + H_2O$	41
R4	$CO + 3 H_2 \leftrightarrow CH_4 + H_2O$	206
R5	$CO_2 + 4 H_2 \leftrightarrow CH_4 + 2 H_2O$	165
R6	$2 \text{ CO} \leftrightarrow \text{C} + \text{CO}_2$	-131

Prinzip der Ko-Elektrolyse von Wasserdampf/CO2 (1:1) in einer SOEC

Anode

$$2O^{2-} \rightarrow O_2 + 4e^-$$

Kathode

 $H_2O + 2e^- \rightarrow H_2 + 2O^{2-}$

 $H_2 + CO_2 \rightarrow H_2O + CO$ (instantaneously) $H_2O + 2e^- \rightarrow H_2 + 2O^{2-}$

Gesamt

 $H_2O + CO_2 \rightarrow H_2 + CO + O_2$

Thermoneutrale Spannung (RT) = 1.360 V Reaktionswärme (Heizwert) $\Delta H^{0}_{H2O/H2} = +242 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta H^{0}_{RWGS+H2O/H2} = + 41 \text{ kJ} \cdot \text{mol}^{-1}$ $+242 \text{ kJ} \cdot \text{mol}^{-1}$ $= +283 \text{ kJ} \cdot \text{mol}^{-1}$ (endotherm)

SOE Stackperformance - Ko-Elektrolyse

Vergleichbare Stack-Charakteristik in Dampf- und Ko-Elektrolyse

SOE - Ko-Elektrolyse: Einstellung der Produktgaszus.setzung

- Einstellung der Produktgaszusammensetzung im Stackbetrieb gezeigt mit H₂/CO zwischen 1.6 und 7.6
- Für praktische Anwendungen ist die Produktgaszusammensetzung mit der Annahme einer Kaskade von H₂O-Elektrolyse + RWGS bestimmbar
- Ausnahme Methan: unterschätzt bei hohen Konversionsraten
 → Vermutlich Hinweis für größeres Ausmaß direkter CO₂-Konversion
- Bei ~ 800 °C ist H₂/CO fast unabhängig von j

Institute of Energy and Climate Research– Electrochemical Process Engineering (IEK-3)

31

Leistung ist nicht zu jeder Zeit verfügbar

Bedarf ist von Erzeugung entkoppelt

<u>Lösung:</u>

Energiespeicherung und Rückwandlung nach Bedarf

- reversible Solid Oxide Cell (rSOC)
- Speicherung mit Hochtemperatur-Elektrolyse (SOE)
- Rückwandlung mit Hochtemperatur-BZ (SOFC)

Reversibles System rSOC

Reversibles System rSOC

SOE Stackperformance - Dampfelektrolyse

~20 % höherer ASR bei ~ 800 °C Ofentemperatur im SOE-Modus (wegen höherer Temperatur im SOFC-Modus bei 0,5 A/cm² in Kombination mit höherer Aktivierungsenergie) ~ 30 % höhere Aktivierungsenergie im SOE-Modus (EIS: höhere Elektrodenpolarisation auf beiden Seiten)

35

SOE Stackperformance - reversibler Betrieb

Keine erhöhte Alterung nach ~250 SOFC/SOEC Zyklus

Fließbild rSOC-Anlage

Wirkungsgrad rSOC-Anlage

Test-system in IEK-3

→ Gesamtwirkungsgrad: $\eta_{tot,AC/AC} = \eta_{el,AC} \cdot \eta_{SOE,AC} = 50.2 \%$

Wirkungsgrad rSOC-Anlage

SOE-Modus → Verluste von Leistung _{AC} Input zu Leistung _{AC} Output

Parameter	SOEC	Unit
T_Stack_mean	750	°C
T_Stack_max	830	°C
P_Stack	1	bar(a)
H2_Stack_inlet_min	10	%
Current density	0.8	A/cm²
P_Storage tank	70	bar(a)
eta_Tank compressor	63	%
eta_Air blower	30	%
eta_Rec. blower	18	%
eta_inverter	99	%
Add. Consumption	50	W
T_Condensation Rec.	75	°C
T_Condensation H2	40	°C
Stack utilization	90	%
Recirculation ratio	11	%
Parameter	SOFC	Unit
T_Stack_mean	750	°C
T_Stack_max	830	°C
P_Stack	1	bar(a)
Current density	0.5	A/cm²
P_Storage tank	70	bar(a)
eta Tank compressor	63	%

30

18

94

50

40

40

18

100

%

%

%

W

°C

°C

%

%

eta_Air blower

eta Rec. blower

Add. Consumption

T_ Condensation Rec.

T_Condensation H2

Stack utilization

Recirculation ratio

eta inverter

39

rSOC - Systementwicklung → Integriertes Modul → Aufbau

rSOC - Systementwicklung -> Systemaufbau

Rezirkulationseinheit:

→ Membranpumpe

 → Kondensator und Wasserabtrennung
 Integriertes Modul (mit 100 mm mikroporöser thermischer Isolation)

Dampferzeuger (auf Rückseite)

rSOC - Ergebnisse → zeitlicher Verlauf

Ergebnisse -> SOFC -> Systemwirkungsgrad @ 160 A (0.5 A/cm²)

Ergebnisse → SOE → Wirkungsgrad → keine BG-Rezirkulation

SOE international (nach SOFC XIV in Kyoto)

• **EU**:

114 Mio € Förderung (32 Projekte)

Beispiele: HELMETH (mit integrierter Methanisierung) → zahlreiche techn. Probleme Salzgitter: 10.000 h Betrieb (nach 7.000 h mussten 4 von 6 Stackmodulen getauscht werden) ReFlex: Zelloptimierung für rSOC durch Elcogen (Finnland/Estland)

Frankreich: in 2018 - 1 SOE-Projekt: ECOREVE: Elektrodenoptimierung für SOEC

SRT: Entwickelt ASC (Technologietransfer von CEA)

CEA-Ausgründung "Sylfen": in 2018 erstes Container-Hybridsystem rSOC (1/4 kW) + Batterie (25 Ebenen Stack à 100 cm² bei 700 °C)

ENGie: 4 Projekte zu SOE, PEEL

Dänemark: reine CO₂-Elektrolyse bei Topsoe (340 kW Anlage)

• Japan:

Keine nennenswerten Elektrolyseaktivitäten (Entwicklung ASC für SOE bei Toshiba) (Schwerpunkt BZ-Hausenergiesystem: 300.000 Einheiten installiert (davon ca. 50.000 SOFC) Größere Anlagen (3 – 250 kW): 30-40 Einheiten installiert (nur SOFC)

• USA:

Keine Elektrolyseaktivitäten; Werkstoffentwicklungen an Unis und Forschungseinrichtungen

SOFC: Acumentrics und LG haben die Arbeiten eingestellt; FCE steht auf der Kippe Bloom energy hat 500 MW hergestellt bzw. in Auftrag

Korea:

Keine nennenswerten Elektrolyseaktivitäten, aber steigendes Interesse

Deutschland: Reallabore der Energiewende (Förderung von Wasserstoff und Brennstoffzellen)

20 Projekte werden finanziert, das Gesamtfinanzierungsbudget beläuft sich von 2019 bis 2022 auf 300 Mio. €/a. Acht Projekte befassen sich mit Elektrolyse, nur eines explizit mit Brennstoffzellen

46

Reallabor-Projects in Deutschland mit Elektrolyse

"Große themenübergreifende und systemübergreifende Projekte, in denen das Zusammenspiel verschiedener Energietechnologien im realen Anwendungsumfeld getestet werden soll"

Projekt	Thema	Elektrolyse	BZ
Element Eins (Thyssengas)	Prod. von H_2 basierend auf nahe gelegenen Windkraftanlagen und zur Einspeisung in bestehende Gaspipelines	100 MW	-
H2 Wyhlen (Energiedienst AG)	Prod. von H ₂ auf der Basis eines nahe gelegenen Laufwasserkraftwerks und dessen Nutzung in der vorhandenen Infrastruktur	10 MW	-
Nordeutsches Reallabor	Sektorkopplung: H ₂ und Fernwärme; Hinzufügen zu Erdgas; Verwendung in Fahrzeugen	77 MW	-
ReWest100	Prod. von H ₂ basierend auf nahe gelegenen Windkraftanlagen und zur Einspeisung in Salzkaverne; Transportmöglichkeiten	30 MW	-
EnergieparkBL	Prod. von H ₂ basierend auf nahe gelegenen Windkraftanlagen und zur Einspeisung in Salzkaverne; Chemische Prozesse	35 MW	-
GreenHydroChem (Siemens, Linde)	Prod. von H ₂ basierend auf nahe gelegenen Windkraftanlagen und zur Einspeisung in Salzkaverne; Chemische Prozesse	50 MW (PEEL)	-
HydroHu Fenne (STEAG)	Prod. von H ₂ basierend auf Wind- / Solarkraftwerken in der Nähe und zur Einspeisung in Stahlherstellung, Gasnetze und Tankstellen	17.5 MW (PEEL)	-
RefLau (Schwarze Pumpe)	Prod. von H ₂ basierend auf Wind- / Solarkraftwerken in der Nähe und zur Einspeisung in Industrie, Gasnetz und Tankstellen	10 MW (PEEL)	2 MW

Zusammenfassung und Ausblick

- Zahlreiche Hersteller (vorwiegend Europa und Nordamerika) f
 ür AEL und PEEL Nur ein Hersteller f
 ür SOE im 100 kW Ma
 ßstab (Sunfire / D)
- PEEL hat großes Potential zur Leistungsdichtesteigerung
 → Herausforderung: Langzeitstabilität, Wirkungsgrad (aktuell < 60 %), Reduktion Edelmetall, speziell Iridium
- SOFC Technologie kann auch f
 ür Hochtemperatur-Elektrolyse (SOE) verwendet werden (Werkstoffe funktionieren in beide Richtungen → rSOC möglich) mit dem Potential höherer Systemwirkungsgrade

 \rightarrow Herausforderung: Alterungsmechanismen bei hohen Stromdichten müssen noch verstanden werden \rightarrow wahrscheinlich Anpassung der Elektroden erforderlich

- Im Temperaturbereich von 700 bis 900 °C kann mit der SOE problemlos auch Ko-Elektrolyse von H₂O und CO₂ oder reine CO₂-Elektrolyse durchgeführt werden
- SOE-Systemwirkungsgrade werden stark von der Möglichkeit der Einkopplung von Wärme aus anderen Prozessen beeinflusst
 - ➔ Systemwirkungsgrade liegen zwischen 75 und 95% (einschließlich der Verdichtung des Produktgases auf 70 bar)

Institute of Energy and Climate Research– Electrochemical Process Engineering (IEK-3)

48

Vielen Dank für ihre Aufmerksamkeit!

Institute of Energy and Climate Research– Electrochemical Process Engineering (IEK-3)

49