Lecture "Climate Engineering"

6. SRM - Stratospheric Aerosol

Ulrich Platt

Institut für Umweltphysik

Lecture Program of "Climate Engineering

Part 1: Introduction to the Climate System (4 sessions)

- 1. Introduction and scope of the lecture
- 2. The Climate System Radiation Balance
- 3. Elements of the Climate System Greenhouse Gases, Clouds, Aerosol
- 4. Dynamics of the Climate System Sensitivity, Predictions

Part 2: Climate Engineering Methods - Solar Radiation Management, SRM

1. SRM – Reflectors in space

2. SRM – Aerosol in the Stratosphere

- 3. SRM Cloud Whitening
- 4. SRM Anything else

Part 3: Climate Engineering Methods – Carbon Dioxide Removal, CDR

- 1. Direct CO₂ removal from air
- 2. Alkalinity to the ocean (enhanced weathering)
- 3. Ocean fertilization
- 4. Removal of other greenhouse gases

Part 4: CE – Effectiveness, Side Effects (3 sessions)

- 1. Comparison of Techniques, characterisation of side effects
- 2. Other parameters than temperature
- 3. Summary

Literature - 1

- Crutzen P. (2006), Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma? An Editorial Essay, Clim. Change, doi:10.1007/s10584-006-9101-y.
- English J.M., Toon O.B., and Mills M.J. (2012), Microphysical simulations of sulfur burdens from stratospheric sulfur geoengineering, Atmos. Chem. Phys., 12, 4775–4793.
- Heckendorn P., Weisenstein D., Fueglistaler S., Luo B.P., Rozanov E., Schraner M., Thomason L.W. and Peter T. (2009), The impact of geoengineering aerosols on stratospheric temperature and ozone, Environ. Res. Lett. 4, 045108, doi:10.1088/1748-9326/4/4/045108.
- Kleinschmitt C., Boucher O., and Platt U. (2018), Sensitivity of the radiative forcing by stratospheric sulfur geoengineering to the amount and strategy of the SO2 injection studied with the LMDZ-S3A model, Atmos. Chem. Phys. 18, 2769–2786.
- Kremser, S., Thomason, L.W., von Hobe, M., Hermann, M., Deshler, T., Timmreck, C., Toohey, M., Stenke, A., Schwarz, J. P., Weigel, R., Fueglistaler, S., Prata, F. J., Vernier, J.-P., Schlager, H., Barnes, J. E., Antuña-Marrero, J.-C., Fairlie, D., Palm, M., Mahieu, E., Notholt, J., Rex, M., Bingen, C., Vanhellemont, F., Bourassa, A., Plane, J. M. C., Klocke, D., Carn, S. A., Clarisse, L., Trickl, T., Neely, R., James, A. D., Rieger, L., Wilson, J. C., and Meland, B. (2016), Stratospheric aerosol—Observations, processes, and impact on climate, Reviews of Geophysics, 54, 278–335, doi:10.1002/2015RG000511.
- Laakso A., Partanen A.-I., Kokkola H., Laaksonen A., Lehtinen K.E.J. and Korhonen H. (2012), Stratospheric passenger flights are likely an inefficient geoengineering strategy, Environ. Res. Lett. 7, 034021 (7pp), doi:10.1088/1748-9326/7/3/034021.

Literature - 2

- McClellan J., Sisco J., Suarez B., Keogh G. (2011), Geoengineering Cost Analysis, Final Report AR10-182, Aurora Flight Sciences Corp., Cambridge, Mass. 02142.
- Niemeier U., Schmidt H., and Timmreck C. (2011), The dependency of geoengineered sulfate aerosol on the emission strategy, Atmos. Sci. Lett., 12, 189–194, doi:10.1002/asl.304,
- Pierce J.R., Weisenstein D.K., Heckendorn P., Peter T., and Keith D.W. (2010), Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft, Geophys. Res. Lett. 37, L18805, doi: 10.1029/2010GL043975.
- Rasch P.J., Tilmes, J., Turco R. P., Robock A., Oman I., Chen C.C., Stenchikov G. I., Garcia, R. (2008), An overview of geoengineering of climate using stratospheric sulphate aerosols, Philosophical transactions of the Royal Society A, 4007 – 4037.
- Tuck A.F., Donaldson D.J., Hitchman M.H., Richard E.C., Tervahattu H., Vaida V., Wilson J. C. (2008), On geoengineering with sulphate aerosols in the tropical upper troposphere and lower stratosphere, Climatic Change 90, 315 331.

Contents of Today's Lecture

- Stratospheric Particle injection Inspired by volcanoes
- Stratospheric Sulfur Aerosol optimum particle size
- Scalability of sulfur injections
- Side effects of stratospheric particles
- "Improved aerosol"
- Delivery techniques
- Effect on climate
- Conclusion

Keith, David, 2001: Geoengineering, Nature, 409, 420.

Stratospheric Particle Injection – Inspired by Volcanic Eruptions

Crutzen P. (2006), Albedo Enhancement by Stratospheric Sulfur Injections: A Ccontribution to Resolve a Policy Dilemma? An Editorial Essay, Climatic Change (2006),

Policy Dilemma: CO₂-emission (heating Earth) comes with SO₂-Aerosol (cooling Earth)

"Nevertheless, again I must stress here that the albedo enhancement scheme should only be deployed when there are proven net advantages and in particular when rapid climate warming is developing, paradoxically, in part due to improvements in worldwide air quality."

Stratospheric Sulfate Aerosol

from a presentation by Alan Robock, Heidelberg 2010

Mount Pinatubo (1) Eruption June 1991

before

after

Photo: NASA

Mount Pinatubo (2) Pinatubo aerosols as seen from the space shuttle Atlantis

Aerosol layers in Earth's atmosphere

Α

A) Optically thick layers of stratospheric aerosol, taken from space shuttle Atlantis on 11 Aug. 1991. Foto: Earth Sciences & Image Analysis Laboratory, NASA, Johnson Space Center.
B) Continental discharge averaged over the annual water year (October through September values); 1 Sv = 10⁶ m³/s. From: K.E. Trenberth, A. Dai, Geophys. Res. Lett. 34, L15702, (2007).

Hegerl G.C. and Solomon S. (2009), Risks of Climate Engineering, SCIENCE 325, 955-956.

Mount Pinatubo (4)

Effects of Mount Pinatubo, Philipines volcanic eruption (June 1991) on the radiation balance and on the hydrological cycle as an analog of geoengineering

Trenberth and Dai (2007) Geophys. Res. Lett.

Figure 2. (top) Adapted time series of 20°N to 20°S ERBS non-scanner wide-field-of-view broadband shortwave, longwave, and net radiation anomalies from 1985 to 1999 [Wielicki et al., 2002a, 2002b] where the anomalies are defined with respect to the 1985 to 1989 period with Edition 3 Rev 1 data [Wong et al., 2006]. (bottom) Time series of the annual water year (Oct. to Sep.); note slight offset of points plotted vs. tick marks indicating January continental freshwater discharge and land precipitation (from Figure 1) for the 1985 to 1999 period. The period clearly influenced by the Mount Pinatubo eruption is indicated by grey shading.

1783-84, Lakagígar (Laki), Iceland

Laki SAT Anomaly (°C) JJA 1783 q-flux

Laki Cloud Cover Anomaly (%) JJA 1783 q-flux

Effectiveness of Particles in the Stratosphere

Parameter	Property	Dependance on radius (r)
Scattering of radiation	Cross-sectional area	r ²
	Albedo (of the particle) (also: "colour")	r wavelength
Mass (instantaneously required in the stratosphere)	Volume, Density	r ³
Lifetime (determines amount of mass to	Settling velocity	r^2 (or r)
annually)	Coagulation	$\sqrt{Mass} \propto r^{3/2}$
Chemical Effectivity	Surface area	\mathbf{r}^2

Why don't aerosol particles simply drop to the ground?

Settling velocity v of a spherical particle (mass m) in a viscous fluid (e.g. air):

a) Acceleration by gravitational force minus buoyancy:

$$F_{G} = mg - b = \frac{4\pi}{3}r^{3}g(\rho_{p} - \rho_{f}) \approx \frac{4\pi}{3}r^{3}g\rho_{p} \quad \begin{array}{c} \rho_{p}: \text{ Density of the particle} \\ \rho_{f}: \text{ Density of the fluid} \end{array}$$

b) Deceleration by frictional (drag) force: Stokes' law

$$F_{s} = 6\pi\mu rv$$
 μ : dynamic viscosity of the fluid r: radius of the particle

Stokes' law is valid for laminar flow up to $\text{Re} \approx 0.1$

→ Settling (or terminal) velocity from $F_G = F_S$:

$$v = \frac{2}{9} \cdot \frac{gr^2}{\mu} \cdot \rho_p \qquad \qquad \text{Note: } v \propto r^2$$

E.g. for particle with r = 1 $\mu m,\,\rho$ = 10^3 kg/m³ in air: v \approx 10-4 m/s or 10 m/d

Stratosphere: Do Particles Settle Faster in Thin Air?

Dynamic viscosity is independent of pressure! \rightarrow settling velocity (of large particles) essentially independent of altitude (only T-effect)

Small Particles: Molecular Flow

Very small particles: Is continuum mechanics O.K.?

Knudsen Number: $Kn = \frac{\text{mean free path}}{\text{particle radius}} = \frac{\lambda_{air}}{r}$

For Kn << 1 the fluid can be described as a continuum, i.e. by macroscopic quantities such as viscosity and density.

For air: Remember $\lambda_{air} = (\sqrt{2}n\sigma)^{-1} \approx 0.06 \ \mu\text{m}$ at 1 atm, 2.4 μm at 25 mbar Thus for particle with r =1 μm : Kn $\approx 0.06 << 1$ (1 atm), Kn ≈ 2.4 at 25 mbar

For Kn > 1 (λ_{air} > r) we are in the regime of molecular flow. Stokes' law for the frictional force must be modified.

$$F_{s} = 6\pi\mu r v \frac{1}{1 + A \cdot Kn} \xrightarrow[A \approx 1]{R \to 0} 6\pi\mu v \frac{r^{2}}{\lambda_{air}} \text{ Stokes-Cunningham formula}$$

 \rightarrow Settling velocity for large Kn (small particles, low pressure):

$$\mathbf{v} = \frac{2}{9} \cdot \frac{g \lambda_{air} \mathbf{r}}{\mu} \cdot \rho_p \propto \frac{1}{p}, \propto \mathbf{r} \qquad \text{Note: } \mathbf{v} \propto \mathbf{r} \text{ (not } \mathbf{r}^2)$$

 \rightarrow Small particles do settle faster in the stratosphere!

Aerosol Physics: Aerosol – Radiation

Interaction

Rayleigh scattering: scattering on air molecules

radius of scatterers r $<< \lambda$ SW radiation ($\lambda \approx 100$ s of nm) and gas molecules (r \approx 0.1 nm)

Mie scattering: Scattering on particles, aerosols, droplets

radius of scatterers $r > \lambda$

SW radiation and aerosol particles or droplets (100 nm < r < 50 μ m)

Size parameter x to compare $\mathbf{x} = \frac{2\pi \mathbf{r}}{\lambda}$ particle size and wavelength of light: x << 1 for molecules and fine particles: $x \ge 1$ for coarse particles and clouds: Mie Scattering

Rayleigh Scattering

Scattering Efficiency as a Function of Particle Size

Optimal Particle Size?

Small Particles \rightarrow More Surface/Mass (less mass needed)

- → But at size parameter x < 1 rapidly decreasing scattering efficiency</p>
- \rightarrow But more scattering in backward direction
- \rightarrow also: particles settle less rapidly
- → However, the useful lifetime of particles is also limited by the stratospheric circulation

Aerosol Backscatter Fraction as a Function of Size Parameter

Scattering of Short-Wave Radiation λ =0.6

Optimal Particle Size

Pierce et al. Geophys. Res. Lett. 37, L18805, doi:10.1029/2010GL043975, 2010

Dependence of parameters of the radiative forcing of stratospheric aerosol on radius

- Blue: SW-cooling effect relative to the particle mass in the stratosphere
- Red: Settling velocity of the particles (calculated for 25 km altitude).

Problems of Stratospheric Aerosol SRM

Pierce et al. Geophys. Res. Lett. 37, L18805, doi:10.1029/2010GL043975, 2010

Stratospheric Aerosol Life Cycle

From:

Which Particle Size-Distribution will Result?

Processes:

- 1) $SO_2 \rightarrow H_2SO_4$ conversion
- 2) Nucleation (new particle formation)
- 3) Condensation (growth of existing particles)
- 4) Coagulation
- 5) Sedimentation

SW Scattering vs. LW scattering

Coagulation of Sulfuric Acid-Aerosol

Heckendorn P, Weisenstein D., Fueglistaler S., Luo B.P., Rozanov E., Schraner M., Thomason L.W. and Peter T. (2009), The impact of geoengineering aerosols on stratospheric temperature and ozone, Environ. Res. Lett. 4, 045108 (12pp) doi:10.1088/1748-9326/4/4/045108.

Cooling Effekt of Sulfur Injetions into the Stratosphere

Calculations of Heckendorn et al. 2009:

Reduction of the global net Insolation (net SW-Flx) as function of the mass of sulfur (in Mt/year) annually injected into the stratosphere.

 \rightarrow At large amounts of S the cooling effect increases only marginally!

→ Extrapolation from Volcanic events too optimistic!

Solution of the Coagulation Problem – by direct Injection of Sulfuric Acid into the Stratosphere?

Pierce et al. Geophys. Res. Lett. 37, L18805, doi:10.1029/2010GL043975, 2010

Kleinschmitt C., Boucher O., Bekki S., Lott F., and Platt U. (2017), The Sectional Stratospheric Sulfate Aerosol module S3A-v1 within the LMDZ general circulation model: Description and evaluation against stratospheric aerosol observations, Geosci. Model Dev. 10, 3359–3378.

Kleinschmitt C., Boucher O., and Platt U. (2018), Sensitivity of the radiative forcing by stratospheric sulfur geoengineering to the amount and strategy of the SO₂ injection studied with the LMDZ-S3A model, Atmos. Chem. Phys. 18, 2769–2786.
Side effects of Strat. Sulfur CE

Possible destruction of stratospheric Ozone

Casualties due to S-aerosol settling back into the troposphere

Change in Crop yield

Change the colour of sky (less blue)

Perturb stratospehric circulation

Pongratz, J., Lobell, D.B., Cao, L. and Caldeira, K., 2012. Crop yields in a geoengineered climate. Nature Clim. Change, 2(2): 101-105, doi:10.1038/nclimate1373

Stratospheric Flow: Brewer-Dobson Circulation

In principle air rises at the equator, penetrates the tropopause and decends again at the poles.

Fig. (top) original sketch by Brewer (1949)

Aerosol (or precursor species) released at the equator will be transported to the pols within a few years.

Lines of constant "age" (in years) of stratospheric air.

The CO_2 -mixing ratio in the (well mixed) troposphere increases monotonously, therefore the CO_2 -mixing ratio indicates when the air entered the stratosphere.

Data from Waugh and Hall 2002

The Global sulfur cycle

Brasseur et al., 1999

1495 fig4.29/4.95 dpm

Leverage Ratio of Stratospheric Aerosol

Remember:

$$R_{Lev} = \frac{Mass of Greenhouse Gas the effect of which is neutralized}{Mass of material needed for the measure}$$

Assuming that 10 MtS/year can reduce the forcing by \approx 4 W/m² (optimistic)

we can say that this would approximately cancle the effect of CO_2 -doubling (from 280 ppm pre-industrial to 560 ppm, actually 3.7 W/m²).

Mass of 280 ppm of atmospheric CO₂:

$$M_{CO2} (1 \text{ ppm }) = \frac{M_{CO2}}{\overline{M}_{Air}} \cdot 10^{-6} \cdot M_{Atm}$$

$$M_{Atm} = \frac{\overline{P}_{Atm} \cdot A_{Earth}}{g} \approx \frac{1.01325 \text{ Pa} \cdot 5.1 \cdot 10^{14} \text{m}^2}{9.81 \text{ N/kg}} \approx 5.266 \cdot 10^{18} \text{ kg}$$

$$M_{CO2} (1 \text{ ppm }) \approx \frac{44}{29} \cdot 10^{-6} \cdot 5.266 \cdot 10^{18} \text{ kg} \approx 7.99 \cdot 10^{12} \text{ kg} \approx 8 \text{ GeV}$$

$$M_{CO2} (280 \text{ ppm }) \approx 2237 \text{ Gt CO}_2 (610 \text{ GtC})$$

$$R_{Lev} = \frac{2237\,Gt}{10\,Mt} \approx 2.24 \cdot 10^5 \text{ per year}$$

How could Particle Sedimentation be prevented?

Wrong explanation 1:

Radiation pressure, Photons have momentum (p=E/c) but it is too small:

solar radiation: $\approx 10^{-4} \text{ W/cm}^2 \rightarrow 3.10^{14} \text{ Photons/s},$ Momentum of a photon $\approx 10^{-27} \text{ kgm/s}$ $\rightarrow \text{Force } \approx 3.10^{-13} \text{ Newtons (for 1 cm}^2)$ Moreover: Momentum transfer to black surface: p, reflecting surface: 2p

ightarrow wrong rotational direction

Wrong explanation 2 (Wikipedia):

Warm layer of air at black surface provides larger pressure ...

Photophoretic Effects

Proposition: "Photophoretic Levitation"

Two mechanisms:

1) Temperature effect: Warm/cold surface Problem: Heat conduction within the (tiny) particle

2) Akkommodation coefficient effekt: "sticky"/less "sticky" surface

Possible Solution of the Settling Problem: Photolevitation of the Particles

Keith, D.W. (2010) Photophoretic levitation of engineered aerosols for geoengineering, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1009519107

Levitated Particles

Advantages and Disadvantages of levitated Particles:

- Much less mass required compared to sulfuric acid (ca. 1/10, mostly due to improved back-scattering)
- Less mass/year required due to longer lifetime
 → e.g. 10 y. lifetime (instead of 1 y. for S-Aerosol): 1/100 of annual transport requirements
- Manufacturing and deployment of particles unclear.
- Long lifetime: How to get rid of the particles if desired?

Delivery of Particles to the Stratosphere

- Aircraft: Large Commercial Airliner (Boeing 747 Class)
- Modified Gulfstream Class
- New Design Airplane
- Hybrid Airship
- Gun (Mark 7 16")
- Gun (Modernized Mark 7)
- Rocket
- Chimney (high towers)
- Slurry Pipe
- Gas Pipe
- Other Techniques

tidicale greeted a 1992 proposal to combat global warming by shooting reflective particles into the atmosphere. The response could be different today.

McClellan et al. 2011	Туре	Representative Airplane	Properties	Availability	
	Large Cargo Aircraft	Boeing 747 (-200)	 Large cargo capacity Long range Efficient 	Dozens available used, approx. 600 built	argotix.
	High Perfor- mance Airlifter	Boeing C-17	 Large cargo capacity Short range High lift wing 	Available new while production line remains open	
	Supersonic Bomber	Rockwell B-1B	 Large cargo capacity Long range High altitude Sensitive technology 	Probably not available, 100 built (Russian Tu-160 Blackjacks may be available, 35 built)	
	Business Jet	Gulfstream G550/650 (C-37A)	 Large cargo capacity OR fuel capacity Well suited to high altitude 	Available used and new, approx. 190 built	The
	High Perfor- mance Zoom Climber	MacDonnell Douglas F-15	 Large Payload Fast time-to-climb High Altitude High maintenance and fuel costs 	Questionable availability, ap- prox. 1200 built. Numerous similar in storage	

Sulfur Injection from Commercial Aircraft?

Maximum negative forcing below ≈ 1.5 W/m², even if fuel sulfur contents is icreased 50fold (from 0.6 g/kg to 30 g/kg)

Laakso A., Partanen A.-I., Kokkola H., Laaksonen A., Lehtinen K.E.J. and Korhonen H. (2012), Stratospheric passenger flights are likely an inefficient geoengineering strategy, Environ. Res. Lett. 7, 034021 (7pp), doi:10.1088/1748-9326/7/3/034021.

The "Coffin Corner"

Best Case Flight Envelope for 747-400

High Towe

The maximum height of an untapered column that can just support its own weight is illustrated in these three towers for steel, aluminum, and carbon/epoxy composite materials. MANANANANA

- 114-km carbon/epoxy composite tower limit.
- · 15-km aluminum tower limit.
- · 5-km steel tower limit.

CLIMATE CHANGE

The SPICE - Project

Cancelled project spurs debate over geoengineering patents

Nature 485, May 24, 2012, p. 429.

SPICE research consortium decides not to field-test its technology to reflect the Sun's rays.

BY DANIEL CRESSEY

echnologies to keep Earth cool could one day provide a radical fix for climate change - and, in a world struggling to control its greenhouse-gas emissions, could also prove highly lucrative for inventors.

But should individual researchers, or companies, be allowed to own the intellectual

potential conflicts of interest. Davidson and Hunt say that they were clear about their patent application before SPICE was awarded funding, and there is no suggestion that they acted inappropriately. But at least one of the funding councils is now investigating the circumstances surrounding the SPICE grant, and the patent in question, says Watson.

patenting in principle — he has applied for patents on techniques to remove carbon dioxide directly from the atmosphere.

Shobita Parthasarathy, a public-policy researcher at the University of Michigan, Ann Arbor, says that the field urgently needs

Source: Wikipedia,

Hughhunt

Simplified Delivery of Sulfur to the <u>S</u>tratosphere

Small Device

Source: Wikipedia

Vortex Rings (Smoke rings)

Exist also without smoke Helmholtz, H.: Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. Journal für die reine und angewandte Mathematik, Berlin; 1826, 25 - 55

What are Smoke Rings (Vortex Rings)?

Simplified Delivery of Sulfur to the Stratosphere – Smoke Rings (Vortex Rings)

A 10cm dia. smoke ring can travel 10-20m and still bring a card-house to collaps

Big Device

The range of a smoke ring scales with the volume/surface ratio, i.e. with R

(Assuming R/r = constant)

→ changing R from 0.05m to 50m would change the range to Z=10 – 20 m to Z ≈ 10 - 20 km

Volume of a vortex ring (r=5m, R=50m): V≈24000 m³

→ Firing the device every 3 minutes would transport 1 million t of SO₂ per year to stratosphere

Pressure increase needed to fire vortes ring: $p \approx 5mBar \text{ or V} \approx 15,000m^3$

30t of TNT (not bad for 60t of SO_2 , compare atillery)

Alternatives to TNT:

30t of superheated water 1t of gasoline spray

Smoke Ring Delivery of SO₂ (or Aerosol) to the Stratosphere

The Question of Cost - 1

McClellan et al. 2011

Yearly Total Cost Comparison (1M tonnes / year)

The Question of Cost - 2

McClellan et al. 2011

Gun Systems

Item	Value ^{44,45,46}
Shell Mass (kg)	862
Payload Per Shell (kg)	70
Gun powder Mass per shot (kg)	297
Powder Cost per kg	\$22
Muzzle Velocity (m/s)	760
Cost per New Barrel (\$)	\$7,500,000
Cost of Shell	\$3,000
Full Time Personnel Per Barrel	2
Fire Rate	2 / min
Shots Per Barrel Lining	1500
Cost Of Barrel Relining	\$335,000
Barrel availability due to relining, main- tenance	50%

Table 15: Gun System Analysis Inputs

McClellan et al. 2011

The "Side Effects" of Stratospheric Geoengineering

Stratospheric Heating

Absorption/scattering efficiencies for the SMALL/WIDE aerosol size distributions. Points are plotted at the mid-point of each wavelength interval.

Ferraro A.J., Highwood E.J., and Charlton-Perez A. J. (2011), Stratospheric heating by potential geoengineering aerosols, Geophys. Res. Lett. 38, L24706, doi:10.1029/2011GL049761

Stratospheric Heating

Ferraro A.J., Highwood E.J., and Charlton-Perez A. J. (2011), Stratospheric heating by potential geoengineering aerosols, Geophys. Res. Lett. 38, L24706, doi:10.1029/2011GL049761

Why Endanger Particles the Ozone Layer? (1)

Katalytic Ozone destruction:

$X + O_3 \rightarrow$	$XO + O_2$
XO + O \rightarrow	X + O ₂
O + O ₃	
\rightarrow 20 ₂	

X/XO: "Katalyst" (e.g. OH/HO₂, NO/NO₂, CI/CIO, Br/BrO)

 HO_X (Bates and Nicolet, 1950) NO_X (Crutzen, 1970) CIO_X (Stolarski and Cicerone, 1974; Molina and Rowland, 1974)

Katalytic ozone destruction explains difference between measured (lower) and calcualted (ca. 3x higher) $O_3 -$ concentrations and their dependence on.

Particles?

net:

Why Endanger Particles the Ozone Layer? (2)

1) Oxides of Nitrogen (one of the katalysts destroying ozone) is converted into (benign) nitiric acid.

 $\begin{array}{ccc} \mathsf{NO}_2 + \mathsf{O}_3 & \to & \mathsf{NO}_3 \\ \mathsf{NO}_2 + \mathsf{NO}_3 & \to & \mathsf{N}_2\mathsf{O}_5 \end{array}$

 N_2O_5 is converted to HNO_3 at particle surfaces; "denoxification".

 $N_2O_5(g) + H_2O(p) \rightarrow 2 HNO_3(p)$

 \rightarrow Reduced formation of CIONO₂

2) Reactions at particle surfaces convert "benign" species (HCI, CIONO₂), to ozone destruction-katalyst-spezies:

 $\begin{array}{lll} \text{CIONO}_{2}\left(g\right) + \text{HCI}\left(p\right) & \rightarrow & \text{HNO}_{3}\left(p\right) + \text{CI}_{2}\left(g\right); & \text{CI}_{2} + \text{hv} \neq 2 \text{ CI} \\ \\ \text{CIONO}_{2}\left(g\right) + \text{H}_{2}\text{O}\left(p\right) & \rightarrow & \text{HNO}_{3}\left(p\right) + \text{HOCI}\left(g\right) \\ \\ \text{HOCI}\left(g\right) + \text{HCI}\left(p\right) & \rightarrow & \text{CI}_{2}\left(g\right) + \text{HOCI}\left(g\right) \\ \\ \text{N}_{2}\text{O}_{5}\left(g\right) + \text{HCI}\left(p\right) & \rightarrow & \text{HNO}_{3}\left(p\right) + \text{CINO}_{2}\left(g\right) \end{array}$

(p) bzw. (g) Reactands at particle or in the gas phase, respectively.

Reaction probability (γ) of NO_X and ClO_X – Reservoir Species at Sulfuric Acid Particles as Function of the Temperature

Calculated Effect of stratospheric "Climate-Engineering Aerosol" on the Ozone Layer

Additional ozone destruction rates due to different katalyst-species in Antarctic Spring, calculated for 2040-2050 and 2 Mt/year sulfur injection.

Tilmes, S., Garcia R.R., Kinnison D.E., Gettelman A., and Rasch P.J. (2009), Impact of geoengineered aerosols on the troposphere and stratosphere, J. Geophys. Res., 114, D12305, doi:10.1029/2008JD011420.

Calculated Annual Variation of the Ozone column Density (in Dobson Units, DU) 2010-2020 vs. 2040-2050 over Antarctca and Arctic (2 Mt-S/year)

The chemical effect is proportional to the injected surface, thus (in good approximation) to the cooling effect!

Tilmes, S., Garcia R.R., Kinnison D.E., Gettelman A., and Rasch P.J.(2009), Impact of geoengineered aerosols on the troposphere and stratosphere, J. Geophys. Res., 114, D12305, doi:10.1029/2008JD011420.

Other Side Effects ... INTERVIEW | ETHISCHE BEWERTUNG

»Der Himmel wäre nie mehr blau«

Im Gespräch mit »Spektrum der Wissenschaft« bewertet der Umweltethiker **Konrad Ott** die Maßnahmen des Climate Engineering aus moralphilosophischer Sicht.

Spektrum der Wissenschaft: Warum ist Climate Engineering für einen Philosophen und Ethiker ein Thema? KONRAD OTT: Schon allein deshalb, weil es zum Problem des Klimawandels gehört. Und der steckt voller ethischer Fragestellungen. Man könnte sogar sagen, dass er im Kern ein umweltethisches Problem ist und kein rein wissenschaftliches oder technisches. Bei seiner Lösung aber bewegt man sich in dem Spannungsfeld zwischen Reduktion von Treibhausgasen, Anpassungsmaßnahmen und den verschiedenen Möglichkeiten des Climate Engineering.

Spektrum der Wissenschaft 4, 2012, S. 12-13

maßnahmen eine starke Erwärmung zur Folge hätte. Solange wir noch andere Handlungsoptionen haben, sollten wir auf jeden Fall einen Weg vermeiden, der zukünftige Generationen in eine derart fatale Situation bringen könnte.

Sehen Sie noch andere ethische Probleme mit der Sulfatinjektion in die Stratosphäre?

OTT: Die gibt es ohne Zweifel. Wenn man das tatsächlich macht, wird sich zum Beispiel die Farbe des Himmels verändern. Er wird nie mehr blau sein, sondern milchig oder gräulich, ähnlich wie Hochnebel. Und wir werden auch die

The Colour of Geoenaineered Skies

2) Clear sky scenario, ozone only atmosphere (background aerosol will make no noticeable change)

Source: Eva Ahbe, Die Änderung der Himmelsfarbe durch Climate Engineering Maßnahmen, Bachelor Thesis, Univ. Heidelberg, 2013

Our Simulations: Side Effects of Stratospheric Sulfur

Strong heating of lower stratosphere by the aerosol:

- more stratospheric water vapour
- changes in high clouds
- effective forcing larger than instantaneous forcing

Kleinschmitt C., Boucher O., and Platt U. (2018), Sensitivity of the radiative forcing by stratospheric sulfur geoengineering to the amount and strategy of the SO_2 injection studied with the LMDZ-S3A model, Atmos. Chem. Phys. 18, 2769–2786,

Our Simulations: Side Effects of Stratospheric Sulfur Injection

Strong heating by the aerosol:

- stratospheric dynamics (QBO) disturbed
- poleward transport is impeded (even larger particles)
- → Quasi-Biennial Oscillation (QBO) breaks down at ≥ 5 TgS/a injection

Kleinschmitt C., Boucher O., and Platt U. (2018), Sensitivity of the radiative forcing by stratospheric sulfur geoengineering to the amount and strategy of the SO_2 injection studied with the LMDZ-S3A model, Atmos. Chem. Phys. 18, 2769–2786,

Consequences of CE Offseting 2xCO₂ on the Global Temperature Distribution

Govindasamy et. al. Global and Planetary Change 37 (2003) 157–168

Consequences of CE on Global Precipitation Patterns

Burden of Sulfate from CE

Model Calculations for 2nd decade (years 11-20 after initiation of CE)

HadGEM2 - Model

 Mean = 11.8 +/- 0.1 mg[SO ₄] m ⁻²							
10	12	14	16	18			

ModelE - Model

Jones A., Haywood J., Boucher O., Kravitz B., and Robock A. (2010), Geoengineering by stratospheric SO_2 injection: results from the Met Office HadGEM2 climate model and comparison with the Goddard Institute for Space Studies ModelE, Atmos. Chem. Phys., 10, 5999–6006.

Jones A., Haywood J., Boucher O., Kravitz B., and Robock A. (2010), Geoengineering by stratospheric SO₂ injection: results from the Met Office HadGEM2 climate model and comparison with the Goddard Institute for Space Studies ModelE, Atmos. Chem. Phys., 10, 5999-6006.

Changes in Temperature and Precipitation

Annual mean Temp. 2nd decade PrecipitationJune – July - August (d) (a) A1B Scenario (IPCC) A1B+CF (HadGEM2 -Model) Mean = -0.74 K Mean = -0.041 mm day 1 -1 -0.5 -0.25 0.25 0.5 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 -2 3 (b) (e) A1B Scenario (IPCC) A1B+CE (ModelE -Model) Mean = -0.69 K Mean = -0.061 mm day1 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 -0.5 -0.25 0.25 0.5 -3 -2 -1 1 2 3

Jones A., Haywood J., Boucher O., Kravitz B., and Robock A. (2010), Geoengineering by stratospheric SO₂ injection: results from the Met Office HadGEM2 climate model and comparison with the Goddard Institute for Space Studies ModelE, Atmos. Chem. Phys., 10, 5999–6006.

What Happens if we stop Climate Engineering Measures?

Very rapid temperature increase if sulfate injections were stopped.

Robock et al. JGR 2008

Advantages and Problems of Stratospheric Particle CE

Advantages:

Relatively cheap to implement (estimated 1-10 billion \$ annually)

Very large leverage factor (about 2.10⁵ per year)

Problems:

Very difficult to achive optimum particle size

Likely destruction of stratospheric aerosol

Casualties due to sulfate-aerosol (≈20,000 annually per million ton of S-aerosol)

No more blue sky anywhere on the globe

Astronomical observations will be affected

Summary

- A closer look to even the most promising CEtechnique i.e. stratospheric aerosol reveals, substantial, fundamental problems (how to inject, influence on the ozone layer, required mass).
- Further research on the problem in particular on nucleation processes - is required.
- Sulfuric acid particles are not optimal because of their chemical effects
- completely different approaches specially engineered particles – could be promising.
- Leverage factors of (1-3)·10⁶ could theoretically be reached.

Ridicule greeted a 1992 proposal to combat global warming by shooting reflective particles into the atmosphere. The response could be different today.