

Kernfusion – der Weg von ITER zum Fusionskraftwerk

Sitzung des AKE der DPG Bad Honnef 02.10.2020 Hartmut Zohm *Max-Planck-Institut für Plasmaphysik* 85748 Garching

Gliederung

- 1.) Kernfusion mit magnetischem Einschluss
- 2.) Aktueller Stand
- 3.) ITER Stand und Perspektiven
- 4.) Der Weg zum Fusionskraftwerk
- 5.) Zusammenfassung

Gliederung

- 1.) Kernfusion mit magnetischem Einschluss
- 2.) Aktueller Stand
- 3.) ITER Stand und Perspektiven
- 4.) Der Weg zum Fusionskraftwerk
- 5.) Zusammenfassung

Mit steigender Anzahl der Kernbausteine überwiegt elektrische Abstoßung

- Bindungsenergie hat ein Maximum bei mittlerer Massenzahl
- Energiegewinnung durch Fusion leichter oder Spaltung schwerer Kerne

Für Energiegewinnung durch Kernfusion müssen die Reaktionspartner

- oftmals miteinander stoßen können \Rightarrow Notwendigkeit des Einschlusses
- eine thermische Energie von 10-20 keV haben (entspricht 100-200 Mio °C)

Bei solchen Temperaturen liegt ein Wasserstoffgas als *Plasma* vor

 vollständig ionisiert – Gas aus geladenen Teilchen

Щ

Zur Vermeidung von Endverlusten wird ein magnetischer Torus verwendet

helikal verschraubte Feldlinien minimieren Teilchendriften

'Stellarator': (komplizierte) Magnetfeldstruktur durch externe Spulen

Beispiel: Wendelstein 7-X (MPI Greifswald)

'Tokamak': Magnetfeld z.T. durch interne Ströme erzeugt (Transformator)

Beispiel: ASDEX Upgrade (MPI Garching)

PΡ

'Tokamak': Magnetfeld z.T. durch interne Ströme erzeugt (Transformator)

Beispiel: ASDEX Upgrade (MPI Garching)

'Tokamak': Magnetfeld z.T. durch interne Ströme erzeugt (Transformator)

Beispiel: ASDEX Upgrade (MPI Garching)

Funktionsschema eines Fusionskraftwerks

pp

Geeignet für Grundlast/Ausregelung (nicht vom Wetter abhängig)

- komplementär zu stochastischen Regenerativen wie Wind und Solar
- 'high grade heat' auch für andere Anwendungen

Nachhaltige Energiequelle (Brennstoffe für viele Millionen Jahre vorhanden, ~ gleichmässig über den Erdball verteilt)

- Deuterium kann z.B. aus Meerwasser gewonnen werden
- Tritium wird im inneren Brennstoffkreislauf aus Li gewonnen
- Lithium ist in der Erdkruste ausreichend vorhanden

Fusionskraftwerke werden günstige Umwelteigenschaften haben

- keine CO₂ Emission
- keine unkontrollierte Kettenreaktion
- Nachwärme kann Anlage nicht zerstören (keine Kernschmelze)
- aktivierte Strukturmaterialien brauchen keine Endlagerung

Gliederung

1.) Kernfusion mit magnetischem Einschluss

2.) Aktueller Stand

- 3.) ITER Stand und Perspektiven
- 4.) Der Weg zum Fusionskraftwerk
- 5.) Zusammenfassung

Zündbedingung:

Fusionsleistung > Wärmeverluste

Führt zu Bedingung an $nT\tau_E$

- n Teilchendichte
- T Plasmatemperatur
- τ_E Energieeinschlußzeit
 (Maßzahl für Wärmeisolation)

,Tripelprodukt' nTτ_E muss Minimalwert übersteigen

Zur Zündung notwendig:

- hohe Temperatur:

400 Mio. °C erreicht ©

- ,hohe' Teilchendichte:
 10²⁰ / m³ erreicht ^(C)
- gute Wärmeisolation:
 τ_E < 1 s erreicht ⊗

Einfacher Ansatz:

- Verluste durch Stöße zwischen Teilchen
- Tokamak von *R* = 0.15 m sollte zünden (!)

Die (traurige) Realität:

- Zündung für R > 6-7 m
- Energietransport durch Turbulenz bestimmt

Wärmeisolation durch turbulente Verluste bestimmt – eines der zentralen Themen der fusionsorientierten Plasmaphysik

Turbulence in

ASDEX Upgrade

gene.rzg.mpg.de

Transport durch gradientengetriebene Turbulenz verursacht

- starke Gradienten von Temperatur und Dichte führen zu Mikroinstabilitäten
- Mikroinstabilitäten bilden turbulenten Zustand
- turbulente Zellen transportieren Wärme und Teilchen nach aussen

Für diffusiven Prozess:

 Wärmeisolation wächst mit Plasmaquerschnitt

```
ASDEX Upgrade:

R = 1.65 m, \tau_{E} = 100 ms

JET (GB):

R = 3 m, \tau_{E} = 500 ms

ITER (F):

R = 6.2 m, \tau_{E} = 3 s
```


Komplexe technologische Probleme wurden gelöst

- Betrieb von W7-X (seit 2/2016) soll Einschlussgüte wie Tokamaks zeigen
- Stellaratoren sind inhärent stationär (Tokamaks nicht)

Mit Wendelstein7-X holen die Stellaratoren auf

Komplexe technologische Probleme wurden gelöst

- Betrieb von W7-X (seit 2/2016) soll Einschlussgüte wie Tokamaks zeigen
- Stellaratoren sind inhärent stationär (Tokamaks nicht)

Mit Wendelstein7-X holen die Stellaratoren auf

Komplexe technologische Probleme wurden gelöst

- Betrieb von W7-X soll Einschlussgüte wie Tokamaks zeigen
- Stellaratoren sind inhärent stationär (Tokamaks nicht)

Wendelstein 7-X in Betrieb!

 alle technischen Systeme funktionieren wie geplant

Erste fusionsrelevante Plasmen

- $T_e \approx 10 \text{ keV}$
- $T_i \approx 2 \text{ keV} (n_e \sim 2 \dots 8 \times 10^{19} \text{ m}^{-3})$

Einschluss entspricht Erwartungen – τ_F bis zu 200 msec

Nächste Schritte

- längere Entladungen, bis zu 30 Minuten
- Maschine im Umbau bis ~ Ende 2021 (stationäre Gefässkühlung)
- Höhere Plasmaperformance (Ausbau der Plasmaheizungen)

30 Sekunden stationäre Plasmaentladung in W7-X

IPP

W7-X Plasma stationär auf allen intrinsischen Zeitskalen ③

Jahr 2018: Rekordwerte für das Tripelprodukt in Stellaratoren

Gliederung

- 1.) Kernfusion mit magnetischem Einschluss
- 2.) Aktueller Stand
- 3.) ITER Stand und Perspektiven
- 4.) Der Weg zum Fusionskraftwerk
- 5.) Zusammenfassung

Eine ,Stufenleiter' von Tokamakexperimenten

	ASDEX Upgrade			
Durchmesser	3.3 m			
Volumen	14 m ³			

Fusionsleistung

1.5 MW (D-T äquivalent) **JET**

6 m 80 m³ $\sim 16 MW_{th}$ (D-T)

ITER

12 m 800 m³

~ 500 MW_{th} (D-T)

	ITER		
Großer Radius	6.2 m		
Kleiner Radius	2.0 m		
Plasmastrom	15 MA		
Magnetfeld	5.3 T (supraleitend)		
Leistungs-			
verstärkung Q	10		
Fusionsleistung	500 MW		
Brenndauer	400 s		
Externe Heizung	50 MW		

Kosten: ~ 15 Milliarden € Erfordert weltweite Anstrengung

ITER wird in Cadarache (F) durch Cn, EU, In, Jp, Ko, RF und die USA gebaut

Ibb

- sehr komplexe Projektsteuerung

Geplante Fertigstellung ~ 2025

Der jetzige Plan sieht die Inbetriebnahme für ≥ 2025 vor

- schrittweise Steigerung der Plasmaparameter
- schrittweiser Ausbau (Komplettierung) der technischen Systeme
- zu Beginn mit einer nichtnuklearen Phase (H und He-Plasmen)
- D-T Betrieb zur Demonstration von Q=10 ab ca. 2035

Vorbereitung zum wissenschaftlichen Betrieb startet jetzt!

Gliederung

- 1.) Kernfusion mit magnetischem Einschluss
- 2.) Aktueller Stand
- 3.) ITER Stand und Perspektiven
- 4.) Der Weg zum Fusionskraftwerk
- 5.) Zusammenfassung

EU Roadmap zum Fusionskraftwerk

DEMO = Schritt zwischen ITER und dem kommerziellen Fusionskraftwerk

Alle ITER Partner haben eigene (z.T. sehr unterschiedliche) DEMO Pläne

Es gibt keine einheitliche Definition, ,high level' Ziele der EU sind

- zuverlässige netto Elektrizitätsgewinnung (einige 100 MW)
- geschlossener Brennstoffkreislauf (keine externe T-Zufuhr)
- Nachweis der ökonomischen und ökologischen Eigenschaften

EU: ,Stepladder to Fusion Electricity'

ITER = ,proof of principle' der Selbstheizung durch α -Teilchen DEMO = ,proof of principle' des geschlossenen Brennstoffkreislaufs DEMO wird größer als ITER sein: 6.2 m \Rightarrow 8-9 m, 500 MW \Rightarrow ~ 2-3 GW

	Α	В	С	D
Electrical power [GW]	1.5	1.3	1.5	1.5
Fusion power [GW]	5.0	3.6	3.4	2.5
Plasma current [MA]	30	28	20	14
Total β _N [% m/MA T]	3.5	3.4	4.0	4.5
coolant	H ₂ 0	He	He	LiPb
Efficiency of H&CD [%]	60	60	70	70

Dies hängt aber stark von den Annahmen über den Fortschritt in den nächsten Jahren ab (d.h. von Optimismus und Ressourcen ⁽³⁾)

EU-DEMO: ,Lessons Learned' 2014-2020

,Conceptual Design Phase' für EU DEMO läuft seit 2014

ITER Physik und Technologie (Spulen, Heizungen...) Basis für die Auslegung

- Plasmabetriebsszenario muss weiter entwickelt werden
- geschlossener Brennstoffkreislauf erfordert neue Entwicklungen
- höhere Neutronenfluenz erfordert weitere Materialentwicklungen

,Integrated Design' wichtig um die R&D-Ziele schon jetzt zu erkennen

DEMO: Herausforderung für die Materialforschung

pρ

Fortschritte in der Materialentwicklungen um Vorteile der Fusion zu nutzen

- Herausforderung: mechanische Stabilität bei hoher Temperatur und unter 14 MeV n-Beschuss (Erhöhung der Ductile-Brittle Transition Temperature)
- EUROFER Stahl bis zu 550° C, besser wären ODS oder SIC/SIC
- auch: Minimierung der Aktivierung und Halbwertszeiten

Ziel: Minimierung des T-Inventars (ITER Site Limit: wenige kg)

- der direkte Abbrand des Brennstoffs ist gering (wenige Prozent)
- langwierige Aufbereitung des abgepumpten D-T Gemischs (~ Stunden)

DEMO Brennstoffkreislauf: ein neues Konzept

Neuer Ansatz: ,direct internal recycling'

- D-T Gemisch wird von He-Asche (teil)separiert, aber nicht getrennt
- Prozesszeit kann in den Minutenbereich gesenkt werden
- Abschätzungen versprechen Senkung des Inventars um Faktor 10 (!)

Bedingt Entwicklung neuer Technologien (Membranpumpen)

Entwicklung von Sensoren und Aktuatoren für DEMO

Sensoren und Aktuatoren nicht mehr durch Physikverständnis getrieben

- höchste Priorität: Maschinensicherheit
- zweite Priorität: Kontrolle des Betriebspunkts (Plasmaparameter)

,Integrierte' Entwicklung unter Berücksichtigung aller Randbedingungen

Beispiel: Brennkontrolle mit D-T Pellets

Entwicklung von Sensoren und Aktuatoren für DEMO

Beispiel: Brennkontrolle mit D-T Pellets

Neue Entwicklungen können großen Impact haben

Während der jetzigen Designstudien werden weitere Fortschritte gemacht Beispiel: Hochtemperatur Supraleitung könnte ein ,Game Changer' sein

Wie passt der Stellarator in diese Strategie?

WP	Description	Design	R&D	Risk	W7X contr.
WPPMI	Plant Level Systems Eng.	Н	L	Feasible	Lessons learned
WPRM	Remote Maintenance	н	М	Needs investigation	
WPMAG	Magnet System	н	L-M	Open issues	Lessons learned
WPBB	Breeding Blanket	М	L	Open issues	
WPDIV	Divertor	М	L	Feasible	Div. performance
WPHCD	Heating and Current Drive	М	L	Feasible	Gyrotron & ECCD
WPSAE	Safety and Environment	L-M	Zero	Feasible	
WPTFV	Tritium, Fueling, Vacuum	L	Zero	Feasible	Steady-state pellets test diff. pumps?
WPBOP	Balance-of-Plant	L	L	Feasible	
WPDC	Diagnostic and Control	L-M	L	Needs investigation	3D, continuous data, Archive, etc.
WPMAT	Materials	Zero	Zero		long time plasma exposure, W-PFC
WPENS	Early Neutron Source	Zero	Zero		

M:20-40% H:40-60% Amount which has to be redone L:10-20%

EUROfusion entwickelt eine Strategie, die "Lücken" zu schliessen

ΠŪ

• Cost breakdown (share of total construction cost)

Studie welche Tokamak und Stellarator mit gleichen Annahmen vergleicht

• Stellaratorspulen aufwändiger, aber Kontrollanforderungen geringer

Gliederung

- 1.) Kernfusion mit magnetischem Einschluss
- 2.) Aktueller Stand
- 3.) ITER Stand und Perspektiven
- 4.) Der Weg zum Fusionskraftwerk
- 5.) Zusammenfassung

Die Fusionsforschung hat in den letzten Jahren große Fortschritte erzielt

• jetzige Kenntnisse ermöglichen den nächsten Schritt: ITER

Der Weg zum Fusionskraftwerk sieht 2 weitere Schritte vor:

- ITER zum Nachweis der Selbstheizung durch He-Kerne (> 2035)
- DEMO zum Nachweis des Kraftwerksbetriebs (Design startet jetzt!)

Fusionskraftwerke könnten > 2050 Baustein der Energieversorgung sein

- immer noch rechtzeitig um weltweite ,Energiewende' zu vollziehen
- diese Entwicklung wird kontinuierliche Unterstützung benötigen

N.B.: Die deutsche Fusionsforschung spielt dabei eine wichtige Rolle! N.B.2: Mit W7-X wird auch der Stellarator eine wichtige Rolle spielen