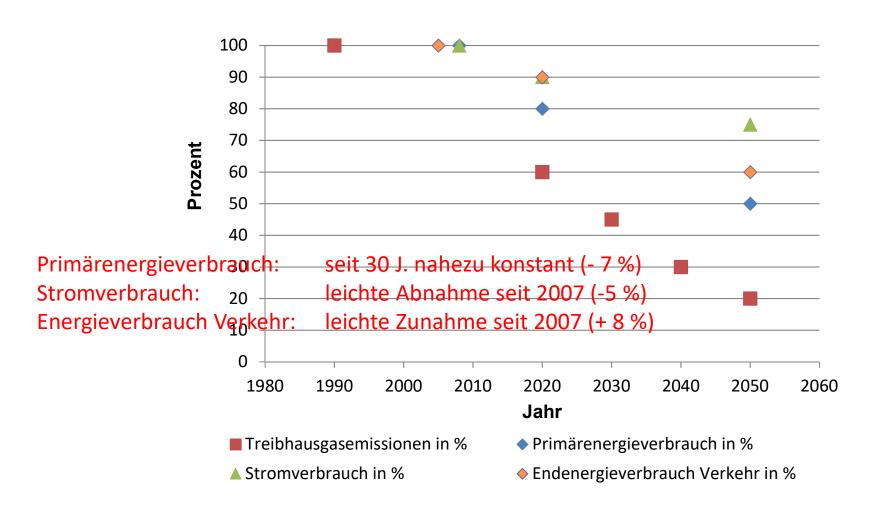


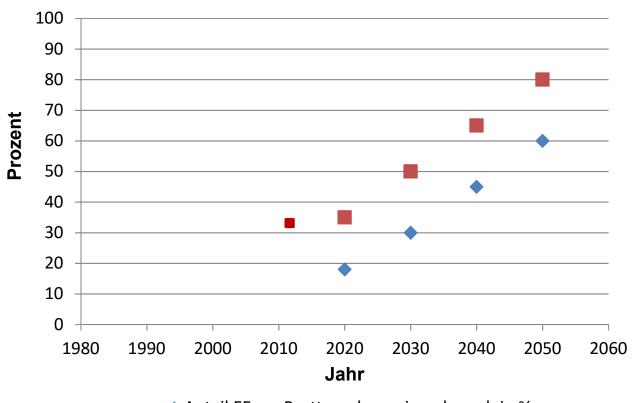
Technologien für klimaneutrale Energieversorgung: eine Systembetrachtung

Eberhard Umbach ESYS – Energiesysteme der Zukunft

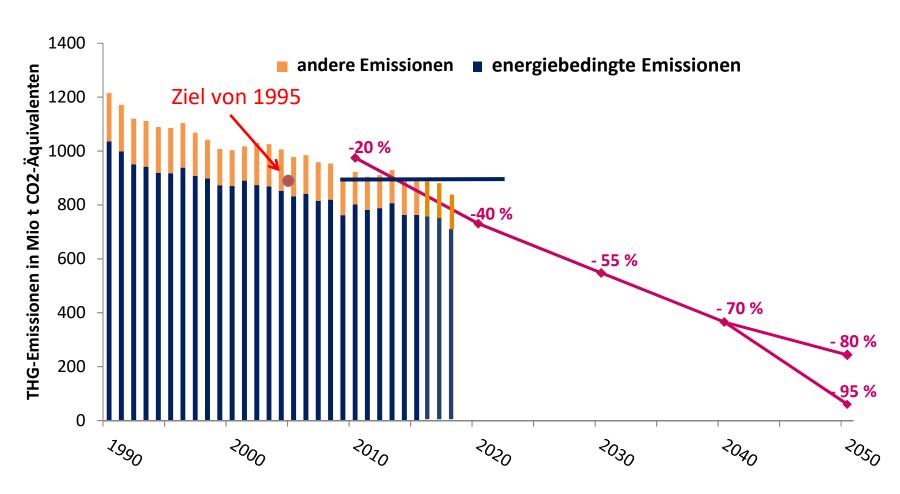
Arbeitskreis Energie der DPG, Bad Honnef 2. Oktober 2020


Nationale Akademie der Wissenschaften Leopoldina acatech – Deutsche Akademie der Technikwissenschaften Union der deutschen Akademien der Wissenschaften

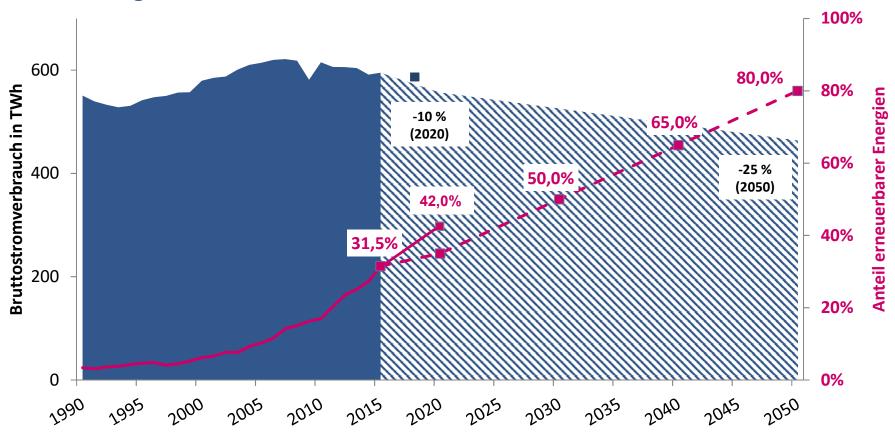
Energiekonzept der Bundesregierung (Sept. 2010)



Energiekonzept der Bundesregierung (Sept. 2010)

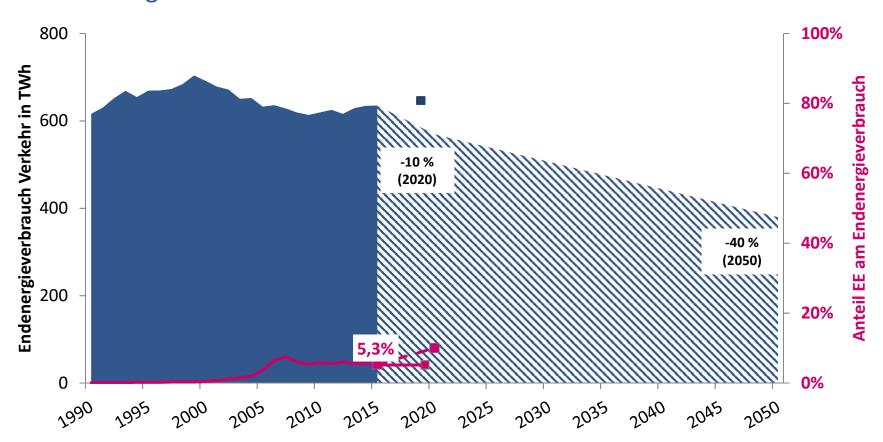

- ◆ Anteil EE am Bruttoendenergieverbrauch in %
- Anteil EE am Bruttostromverbrauch in %

Ausgangslage: Klimaziele bis 2050



Stromsektor – Verbrauch und Anteil erneuerbarer Energien

Entwicklung und Ziele



Verkehrssektor – Verbrauch und Anteil erneuerbarer Energien Entwicklung und Ziele

Ausgangsbeobachtungen und -fragen

- Bei einem "Weiter So" werden die Klimaschutzziele dramatisch verfehlt
- Stromerzeugung: Anteil erneuerbarer Energien signifikant zugenommen, aber im Bereich Wärme (Gebäude, Industrieprozesse) und Verkehr keine oder viel zu kleine Fortschritte
- Wie kann eine Trendwende bei der **Wärmeversorgung des Gebäudebereich**s gelingen, wo heute immer noch überwiegend fossile Energieträger Erdgas und Heizöl eingesetzt werden?
- Und wie beim Mobilitätssektor, der dominant auf fossilen Kraftstoffen basiert?
- Welche Möglichkeiten bieten sich in der Industrie, wo ebenfalls heute die meisten Prozesse fossile Energieträger nutzen?
- Gibt es für all dies übergreifend wirkende Entwicklungen und Rahmenbedingungen?
- Was müssen wir zur Erreichung der Klimaziele tun?
- Was wird das alles kosten?

Gliederung

- Energiewende wo stehen wir heute, wie entwickelt sie sich?
- Akademienprojekt ESYS AG Sektorkopplung
- Konzept Sektorkopplung = ganzheitliche Betrachtung des Energiesystems
- Sektoren im Überblick Wärme Verkehr Strom
- Dimension einer erfolgreichen Energiewende?
- Fazit

Gliederung

- Energiewende wo stehen wir heute, wie entwickelt sie sich?
- Akademienprojekt ESYS AG Sektorkopplung
- Konzept Sektorkopplung = ganzheitliche Betrachtung des Energiesystems
- Sektoren im Überblick Wärme Verkehr Strom
- Dimension einer erfolgreichen Energiewende?
- Fazit

Energiesysteme der Zukunft

Ziele und Aufgaben

- Das Projekt ESYS bündelt Expertise aus der Energieforschung in Deutschland unter dem Dach der nationalen Wissenschaftsakademien.
- In interdisziplinären Arbeitsgruppen erarbeiten rund 120 Expertinnen und Experten Handlungsoptionen für den Weg zu einer umweltverträglichen, sicheren und bezahlbaren Energieversorgung.
- In verschiedenen Dialogformaten werden die Positionen von Akteuren aus Politik,
 Wissenschaft, Wirtschaft und Zivilgesellschaft erhoben und ausgewertet.
- Ergebnisse der Arbeitsgruppen werden veröffentlicht: bisher 11 Stellungnahmen,
 12 Analysen, 12 weitere Publikationsformate, Öffentlichkeits- und Politikberatung
- Projektlaufzeit:
- Phase I 2013-2016 (Förderer: BMBF, Robert Bosch Stiftung)
- Phase II 2016-2019 (Förderer: BMBF)
- Seither: Projektverlängerungen mit dem Ziel einer Institutionalisierung

Die Arbeitsgruppe "Sektorkopplung" in ESYS (2015 – 2018)

- Hans-Martin Henning (FhG ISE), Sprecher
- Eberhard Umbach (acatech), Sprecher
- Frank-Detlef Drake (RWE)
- Manfred Fischedick (Wuppertal Institut)
- Justus Haucap (U Düsseldorf)
- Gundula Hübner (U Halle-Wittenberg)
- Wolfram Münch (EnBW)
- Karin Pittel (ifo Institut)
- Christian Rehtanz (TU Dortmund)
- Jörg Sauer (KIT)
- Ferdi Schüth (MPI für Kohlenforschung)
- Kurt Wagemann (DECHEMA)
- Hermann-Josef Wagner (U Bochum)
- Ulrich Wagner (TU München)

- Florian Ausfelder (DECHEMA), Referent
- Berit Erlach (acatech), Referentin
- Thilo Grau (acatech), Referent
- Christoph Kost (ISE), Referent
- Katharina Schätzler (KIT), Referentin
- Cyril Stephanos (acatech), Referent
- Stephan Stollenwerk (innogy)
- Michael Themann (RWI), Referent

8 weitere Autoren für Einzelthemen

Arbeitsweise der AG Sektorkopplung

- Interdisziplinärer Ansatz: Wissenschaftler/innen aus Naturwissenschaft, Ingenieurwissenschaft, Ökonomie und Sozialwissenschaft aus Forschung und Industrie
- Etwa 25 AG-interne Sitzungen, grob 100 Telefonkonferenzen, dazu zwei Fachgespräche sowie ein Trialog (in Zusammenarbeit mit der HUMBOLD-VIADRINA Governance Plattform) mit Experten aus Wissenschaft, Wirtschaft, Politik, Zivilgesellschaft

- Arbeit basiert auf drei Ansätzen:
 - 1) Expertendiskussion (u.a. Bottom-Up Betrachtungen der Einzelsektoren)
 - 2) Vergleich relevanter Energieszenarien
 - 3) Eigene Modellrechnungen (Modell REMod-D)
- Ergebnisse wurden veröffentlicht als:
 - Analyse: wissenschaftliche Grundlagen
 - Stellungnahme: Handlungsoptionen für die Politik

Publikationen und Links der AG Sektorkopplung

- Analyse: Sektorkopplung Untersuchungen und Überlegungen zur Entwicklung eines integrierten Energiesystems
- Ausfelder et al.; Nov. 2017; 166 Seiten;
- https://energiesysteme-zukunft.de/publikationen/analyse/sektorkopplung/
- Stellungnahme: Sektorkopplung Optionen für die nächste Phase der Energiewende
- Hsg.: acatech/Leopoldina/Akademienunion; Nov. 2017; 100 Seiten
- https://energiesysteme-zukunft.de/publikationen/stellungnahme-sektorkopplung/
- Dazu Kurfassung und engl. Übersetzung
- Materialien: Optimierungsmodell REMod-D
- Erlach et al.; April 2018; 55 Seiten
- https://energiesysteme-zukunft.de/publikationen/materialien/optimierungsmodellremod-d/

Gliederung

- Energiewende wo stehen wir heute, wie entwickelt sie sich?
- Akademienprojekt ESYS AG Sektorkopplung
- Konzept Sektorkopplung = ganzheitliche Betrachtung des Energiesystems
- Sektoren im Überblick Wärme Verkehr Strom
- Dimension einer erfolgreichen Energiewende?
- Fazit

Struktur des Energiesystems

Unterscheidung von vier Nutzungsbereichen

1) Niedertemperaturwärme

Wärme für die Beheizung von Gebäuden und Warmwasser

2) Prozesswärme

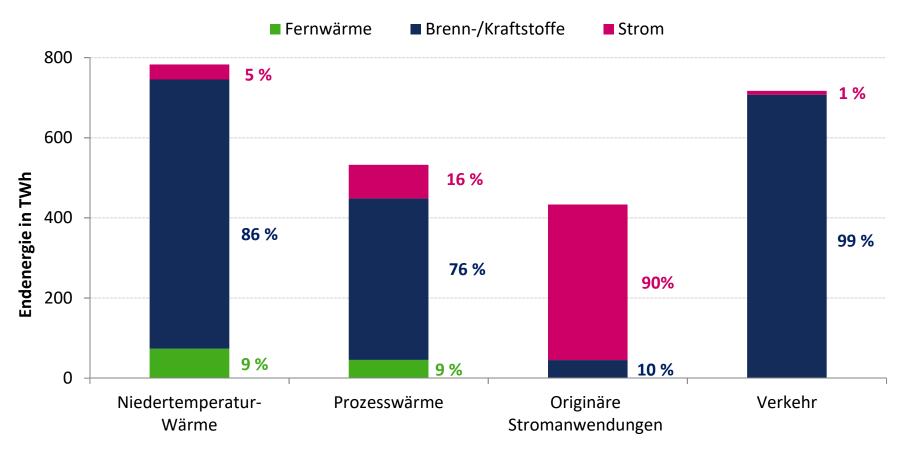
Wärme für Prozesse in Gewerbe und Industrie

3) Originäre Stromanwendungen

Bspw. mechanische Antriebe in Industrie, Gewerbe und Haushalten; Beleuchtung; Anlagen der Informations- und Kommunikationstechnik; Druckluft, Klimaanlagen und Kühlhäuser

4) Verkehr

Fortbewegung in all ihren Formen, also privat und gewerblich sowie auf Straße, Schiene, Wasser und in der Luft



Merke: Strom ~ 20 %, Verkehr ~30 %, Wärme ~ 50 %!

Verteilung der Energieträger in den vier Nutzungsbereichen (2016)

Wege zu einer klimaneutralen Energieversorgung

<u>Bisher</u>: Energiewende vor allem auf Stromerzeugung fokussiert

zukünftig: Um die Klimaziele zu erreichen, ist die Betrachtung einzelner Bereiche

nicht zielführend, sondern eine systemische Herangehensweise und die

Optimierung des Gesamtsystems notwendig

Zwei zentrale Hebel:

- 1) Einsparungen und Steigerung der Effizienz
- 2) Nutzung von erneuerbaren Energien in allen Anwendungsbereichen

Ansatz: Sektorkopplung / Sektorenkopplung

viel stärkere Vernetzung der Sektoren Strom, Wärme und Verkehr

Vorteile: Synergieeffekte (bspw. Einsatz EE-Strom in verschiedenen Sektoren), Effizienzpotenziale, neue Flexibilitäten, Gesamtoptimierung

Herausforderungen der Sektorkopplung

Technologisch

- CO₂-Emissionen können durch Elektrifizierung nur bei entsprechenden Strommix gesenkt werden (fossiler Anteil im Stromsektor derzeit noch bei > 50 %)
- Einige Technologien bereits verfügbar und effizient (Wärmepumpe, Tauchsieder), andere in der Entwicklung fortgeschritten (E-Mobilität), viele aber noch teuer, nicht effizient, oder die Rahmenbedingungen stimmen nicht, oder es besteht noch erheblicher Forschungsbedarf (Power-to-Gas, Power-to-Product)

Bildquelle: ingenieur.de

Herausforderungen der Sektorkopplung

Rahmenbedingungen

- Neue Technologien und Anwendungen benötigen neue oder angepasste Infrastrukturen (z.B. Ladesäulen, H₂-Infrastruktur, Oberleitungen, etc.). Die Politik muss hierfür die Rahmenbedingungen schaffen.
- Derzeit: unterschiedliche Märkte und Infrastrukturen für unterschiedliche Energieträger. Anpassungen in Abgabe- und Umlagesystemen sind notwendig, um Sektorkopplung zu ermöglichen.
 - → Ziel: Schaffung eines "Level-Playing-Field"
- "Business-Cases" für Lösungen wie Power-to-Heat müssen entwickelt werden
- Umstellungen auch bei Verbrauchern: Akzeptanz und Nutzung neuer Technologien und Infrastrukturen

Beispiele für Technologien der Sektorkopplung

	Niedertem- TempWärme	Prozesswärme	Origin. Stromanw.	Verkehr
Direkte Elektrifizierung	Power-to-Heat (Wärmepumpen, Tauchsieder)	Power-to-Heat, (Elektroden- kessel, Power-to- Product)		E-Mobilität, Schienenverkehr, Oberleitungs- LKWs,
Power-to-X	Power-to-Fuels, Power-to-Gas (lokal /KWK)	Power-to-Fuels, Power-to-Gas	Verbrennung, Speicher	Power-to-Fuels, Power-to-Gas
Wasserstoff	Verbrennung (lokal /KWK)	Verbrennung	Brennstoffzellen, Verbrennung	Brennstoffzellen- Fahrzeuge
Sonstige	Biomasse/Biogas, Geothermie, Solarthermie	Biomasse	Biomasse-, Biogaskraftwerke	Biomasse f. Flug- & Schiffsverkehr, Biodiesel,

Gliederung

- Energiewende wo stehen wir heute, wie entwickelt sie sich?
- Akademienprojekt ESYS AG Sektorkopplung
- Konzept Sektorkopplung = ganzheitliche Betrachtung des Energiesystems
- Sektoren im Überblick Wärme Verkehr Strom
- Dimension einer erfolgreichen Energiewende?
- Fazit

Die Sektoren im Überblick

Niedertemperaturwärme

- Zwei wichtige Hebel:
- 1) Weniger Energieverbrauch → Gebäudedämmung
- 2) Heizungstechnologien mit niedrigen spezifischen CO₂-Emissionen
 - → Reduktion auf mindestens 1/3 der heutigen Emizsionen notwendig (wenn Ziele ehrgeiziger: mehr Reduktion)
- Technische Optionen Elektrische Wärmepumpen, Gas-WP und Hybrid-WP, Biomasse, Solarthermie, KWK-Anlagen
- Auch Wärmenetze werden in Zukunft eine wichtige Rolle spielen

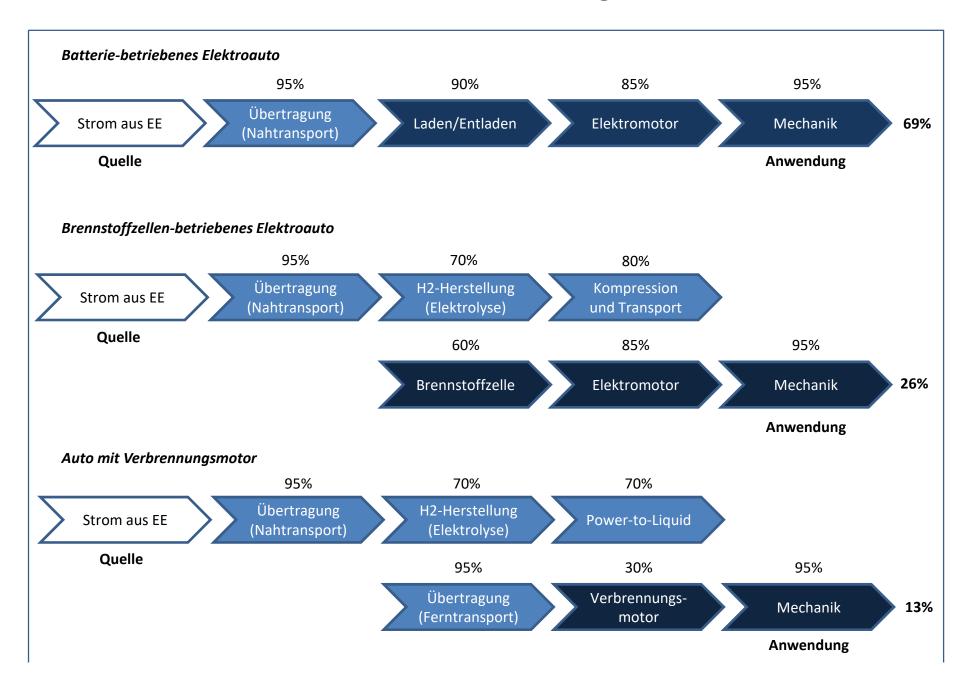
Industrielle Prozesswärme

- Technische Optionen: Einsatz von Biogas, Wasserstoff und Elektrifizierung
- aber: keine einheitlichen Lösungen möglich
- Wichtiges Effizienzpotenzial: Nutzung industrieller Abwärme

Schlüsselfunktion

aber Rahmenbedingungen!

Die Sektoren im Überblick


Verkehr

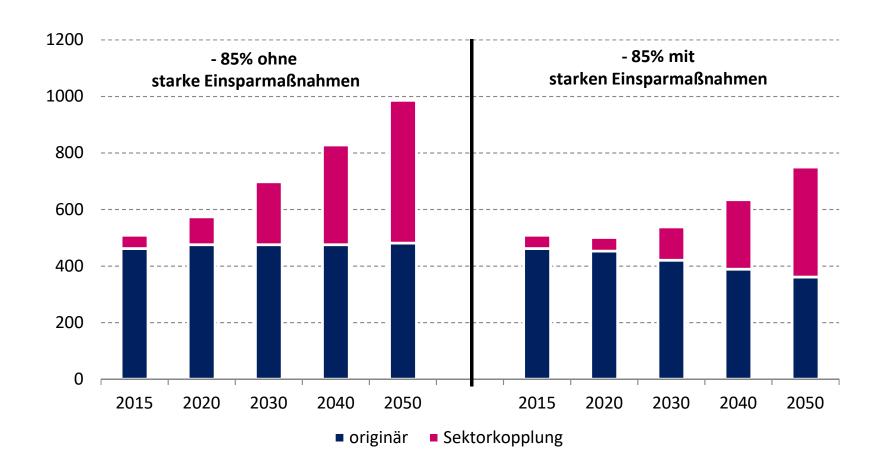
- Wichtige Ansatzpunkte:
 - Effiziente Antriebe und Einsatz erneuerbarer Energien
- Elektrofahrzeuge werden Schlüsselfunktion einnehmen, da sie Strom aus Erneuerbaren effizient nutzen
- Für Fern- und Schwerlastverkehr zeichnen sich noch keine eindeutigen Lösungen ab. In Frage kommen Wasserstofffahrzeuge, elektrische Lösungen (z.B. Oberleitungen, Batterien eher nicht), synthetische Kraftstoffe
- Für Flug- und Schiffsverkehr sind keine rein elektrischen Lösungen absehbar
 - > synthetische Kraftstoffe basierend auf EE-Strom und Biomasse notwendig

Kritik an gegenwärtiger Diskussion:

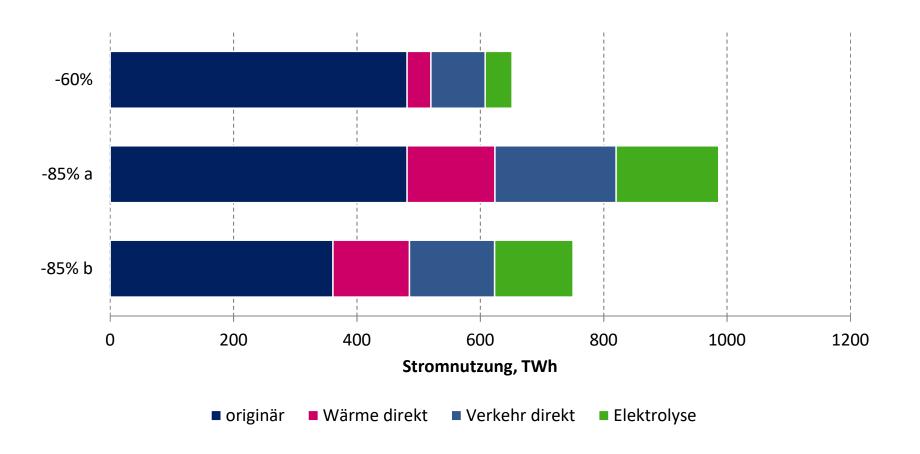
- Stromverbrauch von BEVs: eher 25 kWh / 100 km als 15 kWh / 100 km
- Für jeden neuen BEV: CO₂ Emission aus Strommix ist falsch! CO₂ Emission ist fossil!
- Akzeptanz für BEV außerhalb von Ballungszentren ist nicht gesichert!

Effizienzbetrachtungen

Sektorkopplung und Strombedarf


- Eine viel stärkere **Kopplung der Sektoren (integriertes Energiesystem)** ist ein zentraler Baustein, um die Klimaziele zu erreichen.
- Durch neue Anwendungen vor allem in den Wärme- und Verkehrssektoren wird der **Strombedarf** zukünftig voraussichtlich stark ansteigen (bis zu 1.000 TWh).
- Wind- und Photovoltaikanlagen müssen stark ausgebaut werden, um diesen Bedarf klimaneutral zu decken. Eine fünf- bis siebenfach höhere Kapazität an Erneuerbaren als heute könnte dafür notwendig sein (500 600 GW).
- Natürlich könnten solche Anlagen auch im Ausland stehen: PV im Sonnengürtel,
 Windkraft an Küsten, Wasserstofferzeugung im Nahen Osten.
- Vor allem bei Power-to-X können "ausländische Lösungen" ökonomisch sein.
- Die EU könnte eine sehr viel größere arbeitsteilige Rolle spielen.

Entwicklung Strombedarf (Modellrechnungen)



Stromnutzung im Jahr 2050 (Modellrechnungen)

Gliederung

- Energiewende wo stehen wir heute, wie entwickelt sie sich?
- Akademienprojekt ESYS AG Sektorkopplung
- Konzept Sektorkopplung = ganzheitliche Betrachtung des Energiesystems
- Sektoren im Überblick Wärme Verkehr Strom
- Dimension einer erfolgreichen Energiewende?
- Fazit

Korridor des notwendigen Ausbaus für Wind und PV

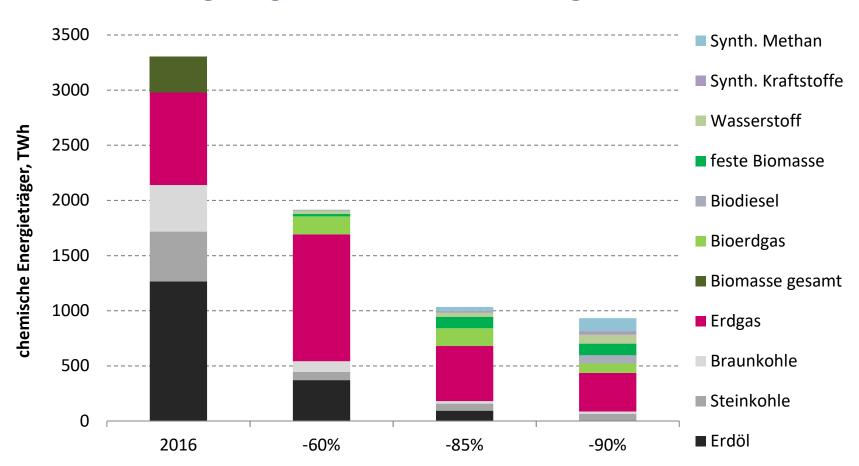
(ohne Einbeziehung von Erzeugung im Ausland)

Strom aus EE erfordert weitere System-Maßnahmen

Strom aus erneuerbaren Quellen wird zum dominanten Energieträger der Zukunft. **Fünf- bis** siebenfach höhere Kapazität könnte 2050 notwendig sein, d.h. 500 – 600 GW).

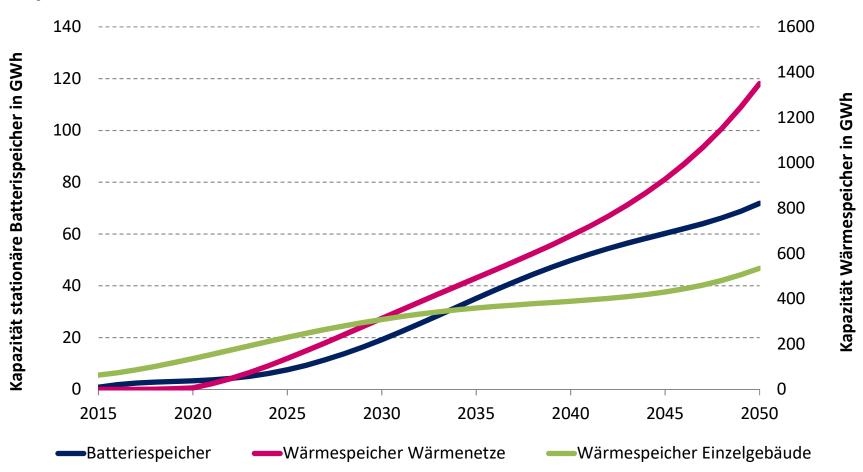
- → Erhebliche Systemkosten und –aufwand entstehen durch den Einsatz der fluktuierenden Erzeuger
- Kurz- und Langzeitspeicher notwendig
- Maßnahmen zur flexiblen Nutzung notwendig (SMART use).
- Maßnahmen zur **effizienten Nutzung von Energie** spielen eine entscheidende Rolle, u.a. auch um diesen Ausbau zu begrenzen.
- Geothermie, Solarthermie, Biomasse-Nutzung ausbauen!
- Zugleich trotz Kurzzeitspeichern und Maßnahmen der flexiblen Stromnutzung –
 Reserveleistung in ähnlicher Größe bereit stellen, d.h. 100 GW, wie heutiger
 Kraftwerkspark ("gegen kalte Dunkelflauten"): Gas- und GuD-KW.

Ein Mix aus Energieträgern - verschiedene Systemoptionen:

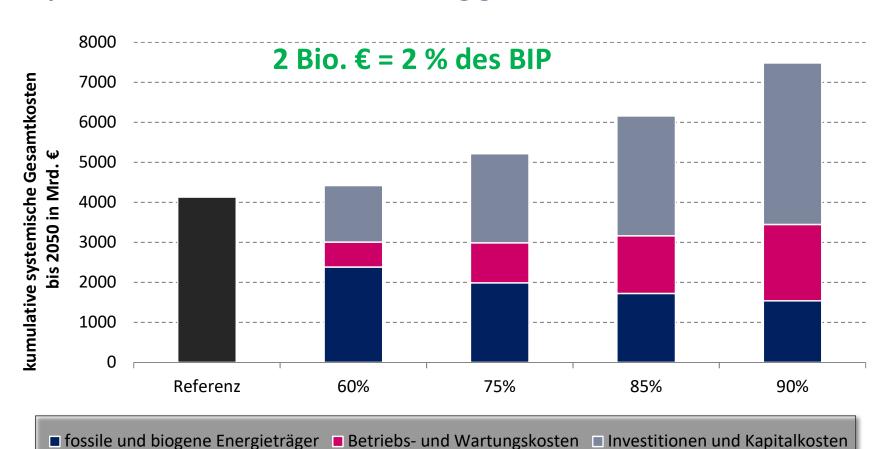

- Der gezielte Einsatz von Biomasse in den Wärme- und Verkehrssektoren sowie ein Ausbau der Geo- und Solarthermie können beitragen, den Ausbau an Wind und PV zu begrenzen und die gesellschaftliche Akzeptanz der Energiewende zu sichern.
- Gas wird noch lange eine wichtige Rolle spielen (fossiles Erdgas; zunehmend Anteile von Bioerdgas und u.U. synthetischen Gasen aus EE-Strom). Das wird aber die Reduktionsziele beeinflussen.
- **Wasserstoff** (Power-to-X) kommt aufgrund seiner vielfältigen Einsatzmöglichkeiten (Nutzungsoptionen in Verkehr, Wärmeversorgung, Stromerzeugung, Nutzung in Industrie, Weiterkonversion zu Kohlenwasserstoffen) eine zentrale Rolle zu.
- Synthetische Brenn- und Kraftstoffe (Synthetic Fuels) werden voraussichtlich unverzichtbar sein (Langzeitspeicher und Versorgungssicherheit bei Dunkelflauten, Einsatz im Schiff- und Flugverkehr und in speziellen Industrieprozessen).

Chemische Energieträger in den Modellrechnungen

Speicher und Reservekapazitäten


- Im künftigen Energiesystem werden flexible Reservekapazitäten benötigt, etwa in der Größenordnung des heutigen konventionellen Kraftwerkspark (je nach Randbedingungen in den Modellrechnungen bis 100 GW
- Kraftwerke werden zukünftig mit teils sehr geringen Volllaststunden betrieben
 - → Energiemarkt der Zukunft muss betriebs- und volkswirtschaftliche Lösungen bieten
- In Frage kommen bspw. Gaskraftwerke und Gasturbinen (niedrige Investitionskosten, flexibler Einsatz), hochflexible gasbetriebene KWK-Anlagen, evtl. Brennstoffzellen
- Zusätzlich werden neben flexiblen Energienutzungsmodellen Lang- und Kurzzeitspeicher benötigt, um Erzeugungsspitzen zu kompensieren
 - → Batterien, Wärmespeicher, Elektrolyseanlagen

Speicher



Systemische Gesamtkosten in Abhängigkeit der Reduktionsziele

Zentrale Ergebnisse – Systemische Mehrkosten der Energiewende

- Durch den Umbau der Energieversorgung entstehen systemische Mehrkosten
- Die jährlichen Mehrkosten liegen bei grob zwei Prozent des heutigen
 Bruttoinlandproduktes (bei allen Unsicherheiten derartiger Projektionen).
- Dabei berücksichtigt: Investitionen für Auf- und Umbau sämtlicher Infrastrukturen (bspw. Kraftwerke, Netzen, Fahrzeugflotten, Speicher), Finanzierungskosten für Investitionen, Kosten für Energieträger, Betriebs- und Wartungskosten. Einbezogen sind auch Kosten für wichtige Effizienzmaßnahmen, insbesondere für die energetische Sanierung von Gebäuden.
- In den Kosten **nicht berücksichtigt**: volkswirtschaftliche Aspekte wie lokale Wertschöpfung, Beschäftigungseffekte, Exportchancen.

Zentrale Ergebnisse – Handlungsbedarfe

- Intensivierung der Konzepte zur direkten Stromnutzung (z.B. E-Mobilität, Wärmepumpen)
- Kontinuierlicher Ausbau der Erneuerbaren und der Netze
- Erforschung, Weiterentwicklung und Erprobung von Schlüsseltechnologien der indirekten Stromnutzung (Wasserstoff, Power-to-X, X = Kohlenwasserstoffe, Kohlenstoffkreisläufe)
- Kritisch: aufgrund der Lebensdauer von Technologien und Infrastrukturen (Kraftwerke, Fahrzeuge, Heizkessel) sowie Planungs- und Investitionszeiten drohen langfristige "Lock-In-Effekte"

Zentrale Ergebnisse – politische Steuerungsinstrumente

- Zentrales Steuerungsinstrument:
 - ein **einheitlicher, wirksamer, sektorübergreifender CO₂-Preis**. Zugleich sollte das bestehende System an Steuern, Abgaben und Umlagen reformiert und verschlankt werden: Abbau von preislichen Verzerrungen zwischen den Sektoren, Ziel: *Level Playing Field*
- Diskutierte Optionen
 - 1) Ausweitung des EU ETS auf alle Sektoren und Einführung eines Preiskorridors
 - 2) Einführung einer europaweiten oder nationalen CO₂-Steuer
 - **3) Reform des bestehenden Umlagen- und Abgabensystems** inkl. EEG; Schaffung eines Level Playing Fields zwischen Energieträgern;
- Jüngste Entwicklungen positiv:
 - Reform des ETS Systems inkl. Verknappung der Zertifikate hat gewirkt: derzeit 25
 30 € pro Tonne CO₂
 - Nationale CO₂ Abgabe wirkt: 25 € ab 2021 bis 55 € ab 2025 pro t CO₂

Zentrale Ergebnisse – politische Steuerungsinstrumente

- Gleichzeitig ergänzende Maßnahmen erforderlich, z.B. bei wirtschaftlichen oder sozialen Schieflagen oder bei Marktversagen.
 - Mögliche Gründe: Informationsdefizite, fehlende Anreize für privatwirtschaftliche Investitionen in öffentliche Güter, Differenzen zwischen langfristigem Nutzen und kurzfristiger Rentabilität.
 - Dazu ergänzende Maßnahmen (bei ständiger Evaluierung): finanzielle Anreize (Investitionszuschüsse, Steuererleichterungen, Marktanreizprogramme), staatliche Kofinanzierung von Infrastrukturen, ordnungsrechtliche Vorgaben (z.B. Emissionsgrenzwerte im Verkehr, bei Wärmeerzeugung), Forschungs- und Entwicklungsförderung, Informations- und Beratungsangebote
- Für langfristige Investitionen in klimafreundliche Technologien ist eine hohe
 Planungssicherheit entscheidend → Verbindlichkeit der Klimaschutzziele wichtig!

Fazit

- Energiewende ist generationen-übergreifendes gesellschaftliches Großprojekt
- Veränderungen erfordern eine systemische Betrachtung und ganzheitliche Optimierung des Energiesystems
- Gesellschaftliche Übereinkunft zur **Priorisierung des Ziels einer drastischen Reduktion der Treibhausgas-Emissionen** → glaubwürdige Haltung der Politik,
 Planungssicherheit, Ehrlichkeit bei den Zusammenhängen und Grenzen
- Ehrlichkeit zu den Kosten: im Mittel bis 2050 rund 2 % des heutigen BIP pro Jahr
- Chancen für Hochtechnologie- und Exportland, Entwicklung von klima- und umweltfreundlichen Technologien
- Sektoren übergreifendes Preissignal für Treibhausgas-Emissionen ist notwendig für technologieoffene und marktwirtschaftliche Steuerung
- Dazu: EU-weite, viel engere Absprache, viel mehr gemeinsames Vorgehen und gemeinsame Projekte: Die "deutsche Energiewende" muss internationaler werden!
- Konzepte für negative Emissionen entwickeln und implementieren (CO₂ Speicherung, CCS, CCR, BECCS,...)

Vielen Dank für Ihre Aufmerksamkeit

Publikationen:

- "Sektorkopplung Untersuchungen und Überlegungen zur Entwicklung eines integrierten Energiesystems"
- "Sektorkopplung Optionen für die nächste Phase der Energiewende"

Download und weiterführende Informationen: https://energiesysteme-zukunft.de/themen/sektorkopplung/

Nationale Akademie der Wissenschaften Leopoldina acatech – Deutsche Akademie der Technikwissenschaften Union der deutschen Akademien der Wissenschaften