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A complex-system modeller‘s view on the
defossilisation of the European energy system
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„A goal is a dream
with a deadline.“
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A complex-system modeller‘s view on the
defossilisation of the European energy system
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capture / extract
general system dynamics
+ meaningful insights
+ inspirational results

Let the weather decide!

I.   Back-on-the-envelope
II.  Simplified network model 
III. Techno-economic network

model (PyPSA) 
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03Fluctuating „weather forces“ +
ideal storage in a copper-plate Europe

𝐺!"# 𝑡 − 𝐿!" 𝑡 = Δ𝑆!"(𝑡)

𝐺!"# 𝑡 =
𝐺!"$ 𝑡 + 𝐺!"% (𝑡)

𝐺!"# = 𝐿!" 𝐺!"$ = 𝛼 𝐺%# 𝜂&%/()* =	1

3 TIME SCALES:
diurnal      (1h-1d)  
synoptic (2-10d)
seasonal (1y) 

1980–2018:   1h, 30x30km²
Renewable Energy Atlas

𝑆 𝑡 − 𝑆 𝑡 − 1 =

= &
𝜂'( Δ𝑆)*(𝑡) (Δ𝑆 > 0)
𝜂+,-./ Δ𝑆)*(𝑡) (Δ𝑆 < 0)

𝐾!$ = max%𝑆 𝑡 − min%𝑆 𝑡
D Heide et.al.: Renewable Energy 35 (2010) 2483-89.

𝛼

storage energy capacity
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𝛼

storage energy capacity

Seasonal optimal mix 
= 60% wind power 
+ 40% solar power
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05Fluctuating „weather forces“ +
ideal storage in a copper-plate Europe
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D Heide et.al.: Renewable Energy 35 (2010) 2483-89.

𝛼

storage energy capacity

Seasonal optimal mix 
= 60% wind power 
+ 40% solar power

10%
Δ 𝑡 = 𝐺!"# 𝑡 − 𝐿!" 𝑡

𝑝 Δ 𝑡 + 1𝑑 Δ 𝑡 4 -56 4 -
4!

temporal (synoptic) correlations  

TV Jensen et.al.: EPJ ST 223 (2014) 2475-81.

10% 𝐿)* 78897: ≈ 340	TWh
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MG Rasmussen et.al.: Energy Policy 51 (2012) 642-51.
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Fluctuating „weather forces“ +
storage + balancing in a copper-plate Europe

“hydro/bio” balancing  (150 TWh)
+ 6h “battery” storage (2.2 TWh, η=1.0)
+ seasonal H2 storage  (25 TWh, η=0.6)
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annual consumption (2009)  
=  3360 TWh

70% wind power generation
=  875 GW installed capacity
=  175.000 x 5 MW turbines
=  4350 x 200 MW wind farms
≈  115000 km²

30% solar PV power generation
=  550 GW installed capacity
≈  3500 - 7500 km²

wind and solar power capacities 

07
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𝐺+, 𝑡 = 𝐵+ 𝑡 -

𝐶+ 𝑡 = 𝐵+ 𝑡
.

𝐹/ 𝑡 =7
+
𝐻/+ 𝑃+ 𝑡

7
+
𝑃+ 𝑡 = 0

𝐺!" 𝑡 − 𝐿! 𝑡 = 𝐵! 𝑡 + 𝑃! 𝑡 + ⋯

𝐺!" 𝑡 = 𝐺!# 𝑡 + 𝐺!$(𝑡)
𝐺+# = 𝛾+ 𝐿+
𝐺+0 = 𝛼+ 𝐺+#

γn =1
αn = 0.7

08Fluctuating „weather forces“ 
+ Renewable European electricity network
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backup capacitybackup energy transmission capacity

𝐺!" 𝑚𝑎𝑥# 𝐺!"
Localized flow
Synchronized flow

Zero flow
Localized flow
Synchronized flow

Zero flow
Localized flow
Synchronized flow

Δ+ 𝑡 = 𝐺+# 𝑡 − 𝐿+ 𝑡 = 𝐵+ 𝑡 + 𝑃+ 𝑡

!
+
max, 𝐹+ & 𝑑+

𝛾! = 1

𝛼! = 𝛼
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RA Rodriguez et.al.: Energy, Sustainability & Society 5 (2015) 21.

Infrastructure measures

𝐾(==>"?" @"
AB"#

𝐾(C= /.>" ?" @"
AB"$

wind / solar
capacities
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System 
costs  

𝐺-. = 𝛾- 𝐿- 𝐺-/ = 𝛼- 𝐺-.
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EU cost reduction / y  
=  3500 TWh/y x 10 €/MWh
=  35 x 𝟏𝟎𝟗 €/y

E Eriksen et.al.: Energy 133 (2017) 913-28.
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EU cost reduction / y  
=  3500 TWh/y x 10 €/MWh
=  35 x 𝟏𝟎𝟗 €/y

Who pays?

+2 +2

+2

2 2

1

2

-3 -3

flow 
tracing

B Tranberg et.al.: Energy 150 (2018) 122-33.

E Eriksen et.al.: Energy 133 (2017) 913-28.
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more (“phyneering”) topics:
principal spatio-temporal modes,

power-flow renormalization,
mesoscale turbulence + climate change
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Development of a new power-flow forecasting tool

𝑁 = 512 𝐿 = 956 à 𝐾 = 12

�⃗� 𝑡 =<
#$%

&
𝐹# 𝑡 𝑒#

≈ �⃗� + 𝑉𝑎𝑟(�⃗�)<
'$%

(
𝑎')(𝑡)�⃗�')

𝐺!* 𝑡 → 𝑃! 𝑡 → 𝐹# 𝑡 =<
!
𝐻#! 𝑃! 𝑡

𝐾= ≈ 𝐾D ≈ 85

12 flow degrees of freedom:
⦿ probabilisitic power flow + uncertainty analysis
⦿ development of a low-dim. power-flow forecasting tool
⦿ information processing in the brain
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F Hofmann et.al.: Europhys. Letters 124 (2018) 18005.
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Techno-economic modeling: 
sector-coupled energy system
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Defossilisation
of a simplified networked 

electricity + heating system 

15

PyPSA-Eur-Sec-30 T Brown et.al.: Energies 12 (2019) 1032.
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simplified cross-sector network model

PyPSA-Eur-Sec-30

16

T Brown et.al.: Energies 12 (2019) 1032.

generation costs transmission costsstorage costs

Subject to constraints : 

Supply hourly inelastic demand

Maximum power flowing through the links

CO2 emission constraint

variable costs 

min 𝐶𝑜𝑠𝑡𝑠 − 𝜆 ' 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
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Green-field optimization of electricity + heating system
17

T Brown et.al.: Energies 12 (2019) 1032.
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Green-field optimization of electricity + heating system
18

CO2 tax is required to 
• incentivize an efficient + highly decarbonized 

all-sector energy system 
• avoid renewable curtailment, combustion of 

fossil fuel, and inefficient technologies
• incentivize efficient technologies such as heat 

pumps + power-to-gas

T Brown et.al.: Energies 12 (2019) 1032.

min 𝐶𝑜𝑠𝑡𝑠 − 𝜆 < 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
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Defossilisation of the European energy system
19

M Victoria et.al.: Nature Communications 11 (2020) 6223.

21 Gt CO2 (≤ 1.75°C)

annualised system costs

7875 B€ 8238 B€

myopic (brown-field) optimization 

ag
e 

di
st

rib
ut

io
n

annual installation (GW/a)
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tech+econ+pol brownfield optimisation
of the EU 2035 electricity system

20

L Schwenk-Nebbe et.al.: Advances
in Applied Energy 2 (2021) 100012.

min 𝐶𝑜𝑠𝑡𝑠 − 𝜆 ' 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

15% of 1990 
CO2 emissions

1x transmission
K = 1

global (efficiency):
Emission Trading System

local (fairness): 
Effort Sharing Regulation

global vs. local CO2 emission constraints 

... and required emission prices

Deep collaboration between countries
lowers total system costs, and
more equal CO2 emissions + prices.
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Outlook: 
Design of the future EU energy system

Electricity              Heating              Transport              Industry

Sectoral Emission Constraints in PyPSA-Eur-Sec
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21Tom Brown (TU Berlin)
Marta Victoria (Aarhus U)



DEPARTMENT OF ENGINEERING                                       

AARHUS                                  
UNIVERSITY                              AU

 

Electricity              Heating              Transport              Industry

Sectoral Emission Constraints in PyPSA-Eur-Sec
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VISION (tech+econ+pol+soc):

country- + sector-specific emission constraints

are a time-dependent policy instrument 

to smoothly control the transformation 

into a net-zero energy system 

for an efficient + fair Europe

22

Outlook: 
Design of the future EU energy system

PyPSA-Eur-Sec
Tom Brown (TU Berlin)
Marta Victoria (Aarhus U)
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(Applied Theoretical) Physics of complex Socio-Economic Systems: 
„modelling challenges to boldly go where no one has gone before“


