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Challenge of an increasing share of renewables in the 
power grid:

Electric power from renewables has intermittent, super-
Gaussian fluctuations
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Challenge of an increasing share of renewables in the 
power grid:

Electric power from renewables has intermittent, super-
Gaussian fluctuations

Anvari, New J. Phys., 2016 
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In grid frequency measurements:

Also intermittency observed

fed-in wind 
power

Haehne, EPL., 2018 
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Intermittency exists on all scales and does not average out

➢ traditionally: no problem due to enough rotating masses

In a future with more renewable production, we need flexible 
battery storage:

• electric batteries

• rotating masses of wind turbines

➢ rotational energy can be accessed using control of 
wind turbines

https://www.maschinenmarkt.vogel.de/abgeschalt
etes-atomkraftwerk-stabilisiert-jetzt-stromnetz-a-
355143/, accessed on 14 October 2024

https://www.maschinenmarkt.vogel.de/abgeschaltetes-atomkraftwerk-stabilisiert-jetzt-stromnetz-a-355143/
https://www.maschinenmarkt.vogel.de/abgeschaltetes-atomkraftwerk-stabilisiert-jetzt-stromnetz-a-355143/
https://www.maschinenmarkt.vogel.de/abgeschaltetes-atomkraftwerk-stabilisiert-jetzt-stromnetz-a-355143/
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1. Motivation

• Intermittency exists on all scales and is relevant for power grid
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2. Power Conversion of Wind Turbines
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Schematic of power conversion of a wind turbine

𝑻𝒈𝒆𝒏𝑻𝒂𝒆𝒓𝒐

𝝎𝒈𝒆𝒏𝝎𝒓𝒐𝒕

𝝎𝒈𝒓𝒊𝒅 ∼ 𝟓𝟎 𝑯𝒛Zweiffel, Forsch Ingenieurwes, 2023 
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Schematic of power conversion of a wind turbine

𝑻𝒈𝒆𝒏𝑻𝒂𝒆𝒓𝒐

𝝎𝒈𝒆𝒏𝝎𝒓𝒐𝒕

𝝎𝒈𝒓𝒊𝒅 ∼ 𝟓𝟎 𝑯𝒛

Drive train dynamics:

𝑑𝜔𝑔𝑒𝑛

𝑑𝑡
=

1

𝐽
𝑘𝑇𝑎𝑒𝑟𝑜(𝑣𝑤𝑖𝑛𝑑 , 𝜔𝑟𝑜𝑡 , 𝛼, … ) − 𝑇𝑔𝑒𝑛(𝜔𝑔𝑒𝑛)

Gearbox with ratio 𝑘 < 1:

𝜔𝑟𝑜𝑡 = 𝑘 ⋅ 𝜔𝑔𝑒𝑛

Aerodynamic power: 

𝑃𝑎𝑒𝑟𝑜 = 𝑇𝑎𝑒𝑟𝑜 ⋅ 𝜔𝑟𝑜𝑡

Electric power: 

𝑃𝑔𝑒𝑛 = 𝑇𝑔𝑒𝑛 ⋅ 𝜔𝑔𝑒𝑛

𝑷𝒂𝒆𝒓𝒐 = 𝑻𝒂𝒆𝒓𝒐 ⋅ 𝝎𝒓𝒐𝒕 𝑷𝒈𝒆𝒏 = 𝑻𝒈𝒆𝒏 ⋅ 𝝎𝒈𝒆𝒏

Zweiffel, Forsch Ingenieurwes, 2023 
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Schematic of power conversion of a wind turbine

𝑻𝒈𝒆𝒏𝑻𝒂𝒆𝒓𝒐

𝝎𝒈𝒆𝒏𝝎𝒓𝒐𝒕

𝝎𝒈𝒓𝒊𝒅 ∼ 𝟓𝟎 𝑯𝒛

𝑷𝒂𝒆𝒓𝒐 = 𝑻𝒂𝒆𝒓𝒐 ⋅ 𝝎𝒓𝒐𝒕 𝑷𝒈𝒆𝒏 = 𝑻𝒈𝒆𝒏 ⋅ 𝝎𝒈𝒆𝒏

Power coefficient 
𝒄𝒑 ∼ 𝑷𝒂𝒆𝒓𝒐

Tip speed ratio 𝝀 =
𝝎𝒓𝒐𝒕𝑹

𝒗𝒘𝒊𝒏𝒅

𝑃𝑎𝑒𝑟𝑜 is maximal for a certain ratio between 𝜔𝑟𝑜𝑡 and 𝑣𝑤𝑖𝑛𝑑

➢ beneficial to change 𝜔𝑟𝑜𝑡 and 𝜔𝑔𝑒𝑛 independently of grid frequency 𝜔𝑔𝑟𝑖𝑑

Zweiffel, Forsch Ingenieurwes, 2023 
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𝑻𝒈𝒆𝒏𝑻𝒂𝒆𝒓𝒐

𝝎𝒈𝒆𝒏𝝎𝒓𝒐𝒕

𝝎𝒈𝒓𝒊𝒅 ∼ 𝟓𝟎 𝑯𝒛

𝑷𝒂𝒆𝒓𝒐 = 𝑻𝒂𝒆𝒓𝒐 ⋅ 𝝎𝒓𝒐𝒕 𝑷𝒈𝒆𝒏 = 𝑻𝒈𝒆𝒏 ⋅ 𝝎𝒈𝒆𝒏

Due to AC-DC-AC converter: Rotational frequency of turbine (𝜔𝑔𝑒𝑛 and 𝜔𝑟𝑜𝑡) is independent 

of grid frequency 𝜔𝑔𝑟𝑖𝑑

➢ also decouples rotating mass from the grid

𝜔𝑔𝑒𝑛 =
𝜔𝑟𝑜𝑡

𝑘
≠ 𝜔𝑔𝑟𝑖𝑑 

Zweiffel, Forsch Ingenieurwes, 2023 
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Torque control of variable speed wind turbines 
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𝑻𝒈𝒆𝒏𝑻𝒂𝒆𝒓𝒐

𝝎𝒈𝒆𝒏𝝎𝒓𝒐𝒕

𝝎𝒈𝒓𝒊𝒅 ∼ 𝟓𝟎 𝑯𝒛

𝑷𝒂𝒆𝒓𝒐 = 𝑻𝒂𝒆𝒓𝒐 ⋅ 𝝎𝒓𝒐𝒕 𝑷𝒈𝒆𝒏 = 𝑻𝒈𝒆𝒏 ⋅ 𝝎𝒈𝒆𝒏

Parameter to control 𝝎𝒈𝒆𝒏 and 𝝎𝒓𝒐𝒕: Electric torque 𝑻𝒈𝒆𝒏 on generator

Zweiffel, Forsch Ingenieurwes, 2023 
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𝑻𝒈𝒆𝒏𝑻𝒂𝒆𝒓𝒐

𝝎𝒈𝒆𝒏𝝎𝒓𝒐𝒕

𝝎𝒈𝒓𝒊𝒅 ∼ 𝟓𝟎 𝑯𝒛

𝑷𝒂𝒆𝒓𝒐 = 𝑻𝒂𝒆𝒓𝒐 ⋅ 𝝎𝒓𝒐𝒕 𝑷𝒈𝒆𝒏 = 𝑻𝒈𝒆𝒏 ⋅ 𝝎𝒈𝒆𝒏

Parameter to control 𝝎𝒈𝒆𝒏 and 𝝎𝒓𝒐𝒕: Electric torque 𝑻𝒈𝒆𝒏 on generator

➢ control law typically depends on 𝜔𝑔𝑒𝑛 itself: 𝑇𝑔𝑒𝑛(𝜔𝑔𝑒𝑛)

1 1.5 2
2.5

3

Zweiffel, Forsch Ingenieurwes, 2023 
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≈ 5 %

≈ 20 %

Accessing the rotating masses
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Rotational speed can be chosen using the generator torque 

➢ access rotational energy dynamically, at the 
cost of only a small power loss
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Accessing the rotating masses

Example from BEM (Blade Element Model), NREL5MW turbine with laminar inflow:

Increase Generator Torque at 𝑡 = 200 s

➢ here: rotational energy provided for ≈ 10 sBurton, Wind Energy Handbook, 60 

17
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2. Power Conversion of Wind Turbines

• A torque balance between rotor and generator dominates the drive train dynamics

• Variable speed wind turbines are state of the art

➢ Advantage: Maximization of power production

➢ Disadvantage:  Removal of grid inertia

• Using the generator torque, rotational energy can be accessed at minimal power loss
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3. Stochastic Langevin Model
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Stochastic Langevin model
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In summary, we need a model to quantify…

1) the short-time dynamics of the noisy power conversion 
process

2) the power conversion of multiple turbines

➢ our approach: stochastic Langevin model (data-based and 
computationally inexpensive)
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Stochastic Langevin model
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Dynamic description: Static description (+ dynamic behaviour):



© ForWind @ForWind_DE

Stochastic Langevin model
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Dynamic description allows us to extract deterministic dynamics:
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Stochastic Langevin model
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• target parameter to model: Rotational speed 𝜔𝑔𝑒𝑛

• in the following, use instead for reasons of clarity: 𝑓 ≔
𝜔𝑔𝑒𝑛

2𝜋

• model is applied in phase space of (rotor-averaged) wind speed 𝑢𝑎𝑣 and 𝑓

Central equation:

𝑑

𝑑𝑡
𝑓 𝑡 = 𝐷𝑓

1 𝑓, 𝑢𝑎𝑣 + 𝐷𝑓
2 𝑓, 𝑢𝑎𝑣 ⋅ 𝛤 𝑡

𝑓: generator frequency          𝑢𝑎𝑣: rotor averaged wind speed                   

𝛤 𝑡 : Gaussian white noise
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Drift coefficient 𝑫𝒇
𝟏 (𝒇, 𝒖): “At a certain point 

(𝑓, 𝑢𝑎𝑣) in phase space, what is the average change of 
𝑓 in the next 𝜏 seconds?”

➢ linear, deterministic dynamics

Stochastic Langevin model

𝑑

𝑑𝑡
𝑓 𝑡 = 𝐷𝑓

1 𝑓, 𝑢 + 𝐷𝑓
2 𝑓, 𝑢 ⋅ 𝛤 𝑡

𝑓: generator frequency          𝑢: wind speed                   

𝛤 𝑡 : Gaussian white noise

Diffusion coefficient 𝑫𝒇
𝟐 (𝒇, 𝒖): “At a certain point 

(𝑓, 𝑢𝑎𝑣) in phase space, what is average squared change 
of 𝑓 (“variance of change”) in the next 𝜏 seconds?”

➢ together with 𝜞 𝒕 : random dynamics

𝐷𝑓
1 (𝑓, 𝑢) and 𝐷𝑓

2 (𝑓, 𝑢) estimated from highly resolved (1 𝐻𝑧) „training data“ (OpenFAST, NREL 5MW turbine):

Risken, The Fokker-Planck equation, 48

Anahua et al., 2008, Wind Energy

𝑀𝑓
𝑛

𝑓𝑖 , 𝑢𝑎𝑣,𝑗 , 𝜏 = 𝑓)ۦ 𝑡 +  𝜏 − 𝑓 𝑡 )𝑛 |𝑓 𝑡 = 𝑓𝑖, 𝑢𝑎𝑣 𝑡  = ൿ𝑢𝑎𝑣,𝑗

𝐷𝑓
(𝑛) 𝑓𝑖 , 𝑢𝑎𝑣,𝑗 =

1

𝑛!
lim
𝜏→0

1

𝜏
𝑀𝑓

𝑛
𝑓𝑖 , 𝑢𝑎𝑣,𝑗 , 𝜏

24
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Stochastic Langevin model
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Example trajectory in drift field:
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Parametrization of drift coefficients
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➢ approximately linear dependency also for other bins 𝑢𝑎𝑣,𝑖 

➢ fit linear parametrization 𝐷𝑓
1

𝑓|𝑢𝑎𝑣,𝑖 = 𝑎 ⋅ 𝑓 + 𝑏 to drift values in every bin 𝑢𝑎𝑣,𝑖
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Stochastic Langevin model
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𝑫𝒇
𝟏 𝒇, 𝒖 (“drift field”)

Estimation results:

𝑫𝒇
𝟐 𝒇, 𝒖 (“diffusion field”)

𝑑

𝑑𝑡
𝑓 𝑡 = 𝐷𝑓

1 𝑓, 𝑢 + 𝐷𝑓
2 𝑓, 𝑢 ⋅ 𝛤 𝑡

27
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Step 1) “Training” data set:

Estimate drift 𝐷𝑓
1  and 

diffusion 𝐷𝑓
2

Recursive stochastic model via integration

28

Step 2) “Test” wind speed data set: 

Reconstruct 𝑓 𝑡 by integration of 

Langevin equation

➢ stochastic model

𝑓 𝑡 + Δ𝑡 = 𝑓 𝑡 + 𝐷𝑓
1 𝑓, 𝑢 Δ𝑡 + 𝐷𝑓

2 𝑓, 𝑢 Δ𝑡 ⋅ 𝛤 𝑡

𝑑

𝑑𝑡
𝑓 𝑡 = 𝐷𝑓

1 𝑓, 𝑢 + 𝐷𝑓
2 𝑓, 𝑢 ⋅ 𝛤 𝑡

28
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Stochastic Langevin model
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Example for modelled time series

(mean wind speed 8.5 m/s, turbulence class B)
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Obtain power via parametrization
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How to obtain power time series from stochastically modeled time series 𝑓 𝑡 ?

➢ Parametrization via 𝑃 =  𝑇𝑔𝑒𝑛 ⋅ 𝜔𝑔𝑒𝑛 =  𝑇𝑔𝑒𝑛 ⋅ 2𝜋𝑓

30
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3. Stochastic Langevin Model

• dynamical description of the wind turbine power conversion using stochastic approach

• extraction of the deterministic dynamics from a noisy system is successful

• gives a recursive model that agrees well with engineering model data
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4. Accessing Rotational Energy in Langevin Model

+
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Torque control in stochastic Langevin model
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Use the following torque control:

Focus on region 2, where:       𝑻𝒈𝒆𝒏 = 𝑲𝒇𝟐 →  𝑷 =  𝟐𝝅𝑲𝒇𝟑

1 1.5 2 3
2.5

𝑲 = 𝑲𝒐𝒑𝒕
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Torque control in stochastic Langevin model
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Use the following torque control:

Focus on region 2, where:       𝑻𝒈𝒆𝒏 = 𝑲𝒇𝟐 →  𝑷 =  𝟐𝝅𝑲𝒇𝟑

1 1.5 2 3
2.5

vary 𝑲

𝑲 < 𝑲𝒐𝒑𝒕𝑲 > 𝑲𝒐𝒑𝒕

𝑲 = 𝑲𝒐𝒑𝒕
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How to introduce torque control to stochastic model?

Torque control in stochastic Langevin model

Idea:

Train model (i.e. 𝐷𝑓
1 𝑓, 𝑢 and 𝐷𝑓

2 𝑓, 𝑢 ), for 

different 𝐾 ∈ 𝐾𝑜𝑝𝑡, 1.05𝐾𝑜𝑝𝑡, 1.1𝐾𝑜𝑝𝑡, 1.2𝐾𝑜𝑝𝑡  in the 

training data

➢ dynamically switch between models for different 𝐾

35
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How to introduce torque control to stochastic model?

Torque control in stochastic Langevin model

Idea:

Train model (i.e. 𝐷𝑓
1 𝑓, 𝑢 and 𝐷𝑓

2 𝑓, 𝑢 ), for 

different 𝐾 ∈ 𝐾𝑜𝑝𝑡, 1.05𝐾𝑜𝑝𝑡, 1.1𝐾𝑜𝑝𝑡, 1.2𝐾𝑜𝑝𝑡  in the 

training data

➢ dynamically switch between models for different 𝐾

36
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Consider time series from before:

(mean wind speed 8.5 m/s, turbulence class B)

At certain time stamp, set 𝐾 = 1.1𝐾𝑜𝑝𝑡:

➢ Generator torque and power are increased

➢ Turbine provides rotational energy

Torque control in stochastic Langevin model

37

𝑲 = 𝑲𝒐𝒑𝒕 𝑲 = 𝟏. 𝟏𝑲𝒐𝒑𝒕
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Torque control in stochastic Langevin model

38
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Quantification of rotational energy
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𝑲 = 𝑲𝒐𝒑𝒕 𝑲 = 𝟏. 𝟏𝑲𝒐𝒑𝒕

Compute 𝐸𝑟𝑜𝑡 ≈ 𝑡0׬

𝑡0+10𝑠
𝑃1.1𝐾𝑜𝑝𝑡

(𝑡)  − 𝑃1.0𝐾𝑜𝑝𝑡
(𝑡) 𝑑𝑡:

➢ 𝐸𝑟𝑜𝑡, 𝐵𝐸𝑀 = 1116 kWs

Get uncertainty of stochastic model using 𝑛 = 20 simulations 

with different noise from 𝑡0:

➢ 𝐸𝑟𝑜𝑡, 𝐿𝑎𝑛𝑔𝑒𝑣𝑖𝑛 = (1404 ± 108) kWs

𝒕𝟎
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Quantification of rotational energy
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Ullah et al., IEEE Trans. Power Syst., 2008:

At wind speeds ≥ 6.5 m/s, a wind turbine can 
access a rotational energy of ≈ 10 % of their 
rated power for ≈ 10 s.

➢ ≈ 1000
kWs

MW Nennleistung

Milan et al., PRL, 2013:

For one turbine, extreme 1s power increments of 
≈ 25 % of the rated power occur

➢ In 10 seconds: ≈ 2500
kWs

MW Nennleistung

Anvari, New J. Phys., 2016 
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Quantification of rotational energy

41

➢ need several turbines to compensate power increments of one turbine with rotational energy

Anvari, New J. Phys., 2016 

Ullah et al., IEEE Trans. Power Syst., 2008:

At wind speeds ≥ 6.5 m/s, a wind turbine can 
access a rotational energy of ≈ 10 % of their 
rated power for ≈ 10 s.

➢ ≈ 1000
kWs

MW Nennleistung

Milan et al., PRL, 2013:

For one turbine, extreme 1s power increments of 
≈ 25 % of the rated power occur

➢ In 10 seconds: ≈ 2500
kWs

MW Nennleistung
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Outlook
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Wind
Interaction?

𝑓1(𝑡, 𝑓2, … , 𝑓𝑛 , … ) 𝑓2(𝑡, 𝑓1, … , 𝑓𝑛 , … ) …

stochastic models

Examine synergy of multiple turbines to provide rotational energy
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Outlook
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Verify model with experimental 

data (model turbines, 𝐷 = 0.6 m)

Verify model with field data from WiValdi Research Wind Farm 

Picture: Jannis Maus
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Summary
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1. Motivation

• Intermittency exists on all scales and is relevant for power grid

2. Power Conversion of Wind Turbines

• A torque balance between rotor and generator dominates the drive train dynamics

• Variable speed wind turbines are state of the art

➢ Advantage: Maximization of power production

➢ Disadvantage:  Removal of grid inertia

• Using the generator torque, rotational energy can be accessed at minimal power loss
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3. Stochastic Langevin Model

• dynamical description of the wind turbine power conversion using stochastic approach

• extraction of the deterministic dynamics from a noisy system is successful

• gives a recursive model that agrees well with engineering model data

4.   Accessing Rotational Energy in Langevin Model

• train Langevin models for different torque controls

• dynamic „torque control“ by switching between these models

• after a switch: convergence back to fixed point gives transient of rotational energy 

provision
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