

Perovskite-based Tandem Photovoltaics State of the art and Outlook

Prof. Dr. Ulrich W. Paetzold

KIT – The Research University in the Helmholtz Association

www.kit.edu

Perovskite-Based Tandem Photovoltaics @KIT

The Research University in the Helmholtz Association

Perovskite Thin-Film Lab

Perovskite-Based Tandem Photovoltaics @KIT

Materials

Devices: Perovskitebased Tandem PV

Scalable Fabrication Methods

Applications: BIPV, VIPV & AgriPV

Mission: Advance the **stability**, **scalability**, and **performance** of perovskite-based tandem photovoltaics.

Taskforce Perovskite PV at KIT // 28 PhDs and Postdocs

High Efficiency Perovskite-Based Tandem Photovoltaics

Tandem PV reduces intrinsic thermalization losses, thereby enabling much higher power conversion efficiencies (thermodynamic limit > 40%).

High Efficiency Perovskite-Based Tandem Photovoltaics

High Efficiency Perovskite-Based Tandem Photovoltaics

The rapid increase and the efficiency potential inspire the rise of perovskite tandem PV.

Why Perovskite-based Tandem PV?

The efficiency of conventional Si PV converges in ~5 years towards 27%.

Solution: Tandem PV with...

- Efficiency > 30%,
- Long-term stability,
- Material availability,
- Scalable production.

[1] adapted from M. Hermle | ISE photovoltaics report 2022. [ISE Fraunhofer]

Why Perovskite-based Tandem PV?

Perovskite-based tandem photovoltaics reduce the carbon footprint of PV.

Power conversion efficiency (%)

- Many LCAs and circularity evaluations forecast a significantly lower impact for perovskite-based tandem solar cells compared to conventional silicon photovoltaics (Si PV).
- Assuming similar stability, the carbon footprint (measured in gCO2e) is expected to be reduced by at least 15%.

^[1] N. Bartie et al. Journal of Industrial Ecology 2023;27:993-1007. [HZB]

Better use of area for PV to meet EU Green Deal & German Osterpacket Goals!

- German Osterpaket¹ Targets:
 - 225 GW_p in 2030
 - 400 GW_p in 2040
- PV has lowest footprint among all renewables.
- But current PV technologies would require ~2% space in Germany in 2040.
 - => High Efficiency and Integration are major trends for future PV Technologies.

BREAKING NEWS in 2024

High Efficiency & New Device Architectures

KIT - The Research University in the Helmholtz Association

www.kit.edu

Versatile options

Prof. Dr. U. W. Paetzold

DEVICES: Perovskite-Based Tandem Photovoltaics

Perovskite/Si Tandem PV

>31%

A. Farag et al., Adv. Func. Mater. 33(3), 2210758 (2023). J. Roger et al. Adv. Energy Mater. 12(27), 2200961 (2022). T. Feeney et al., Solar RRL 6(12), 2200662 (2022).

Perovskite/CI(G)S Tandem PV

M. Ruiz Preciado et al., ACS Energy Letters 7(7), 2273-2281 (2022).

S. Gharibzadeh et al., Adv. Func. Mater.30(19). 19099196, (2020).

T. Feeney et al., Solar RRL 6(12), 2200662 (2022).

for Economic Affairs and Climate Action

HELMHOLTZ ASSOCIATION

All-Perovskite Tandem PV

First All-Perovskite Tandem Solar Module Fabricated

B. A. Nejand, et al., Nature Energy 7, 620-630 (2022). H. Hu et al. Adv. Funct. Mater. 2107650 (2021). B. A. Nejand, et al., Adv. Energy Mater. 1902583 (2020).

World's First All-Perovskite Tandem Solar Module Fabricated at KIT!

All layers processed with scalable fabrication methods.

2

B. Abdollahi et al., Nature Energy 7, 620–630 (2022). DOI: 10.1038/s41560-022-01059-w

Prof. Dr. U. W. Paetzold

All-perovskite tandem modules processed exclusively with scalable fabrication methods

Processes: Slot-Die (SD) Coating, Evaporation, Laser Scribing, Sputtering, ALD

Vacuum-Assisted Gas Quenching is essential for non-destructive sequential solution processing!

B. Abdollahi et al., Nature Energy, DOI: 10.1038/s41560-022-01059-w (2022).

All-perovskite tandem modules processed exclusively with scalable fabrication methods

Power conversion efficiency of 19.3% and > 23% on an aperture area of 12.25cm² and 4 cm², respectively.

Power generation builds up stripe by stripe.

B. Abdollahi et al., Nature Energy , DOI: 10.1038/s41560-022-01059-w (2022).

All-perovskite tandem modules processed exclusively with scalable fabrication methods

Power conversion efficiency of 19.3% and > 23% on an aperture area of 12.25cm² and 4 cm², respectively.

Photovoltaic characteristics of module						
Device	Area cm²	V _{oc} (V)	FF (%)	I _{sc} (mA)	PCE (%)	120 (Yu) ^{1]} ^{1]} ¹ ¹ ¹ ¹ ^{0.8} ^{[[]} ¹ ^{0.8} ^[] ¹ ^{0.6} ^{ensi} ty
Cell strip (BW)	1.75	1.93	71	24.9	19.4	
(FW)	1.75	1.91	70	24.5	18.8	Contraction of the second
Module (BW)	12.25	13.3	71	24.8	19.1	
(FW)		13.1	71	24.8	18.8	0 4 9 12 16 20
						0 4 0 12 16 20 Voltage (V)

Low scaling losses comparing PCE on cell-stripe level (PCE~19.4%) and module level (PCE~19.1%).

B. Abdollahi et al., Nature Energy , DOI: 10.1038/s41560-022-01059-w (2022).

All-perovskite tandem modules processed exclusively with scalable fabrication methods

Analysis of Inhomogeneities by Photoluminescence

18

Translucent All-Perovskite Tandem Photovoltaics

10 µm

Objective:

- High average visible transmission (AVT)
- High Color Rendering Index (CRI)
- High Power Conversion Efficiency (PCE)

D. Ritzer et al., Energy & Environmental Science 2023, DOI: 10.1039/D2EE04137E (2023).

Translucent All-Perovskite Tandem Photovoltaics

New Design Opportunities for Multi-Use Thin-Film Photovoltaics

VERTICAL GRADIENT

RADIAL GRADIENT

D. Ritzer et al., Energy & Environmental Science 2023, DOI: 10.1039/D2EE04137E (2023).

A rising era of perovskite-based triple-junction photovoltaics

Early in 2024 a handful of research groups report Perovskite/Perovskite/Si Tandem Cells w. PCE > 24%

High-Performance Pero/Pero/Si Triple-Junction PVs

Stable power output (24.1%) and minimal hysteresis in triple-junction PVs

ISFH

High-Performance Pero/Pero/Si Triple-Junction PVs

Vacuum-assisted growth: high-quality (free of wrinkles, pinholes, and cracks) perovskite thin films

arlsruhe Institute of Technology

ISFH

Scalable Fabrication Methods

KIT - The Research University in the Helmholtz Association

www.kit.edu

Developing Scalable, Reliable, and High-Throughput Fabrication Methods for Commercial Scale Solar Modules **Commercial thin film**

2.3 m

module > 2 m^2

Scalability – From Lab to Fab

Versatile options for perovskite deposition:

Vapor phase deposition methods in vacuum:

Solution-based deposition methods:

[1] adapted data from: M. A. Green et al., Progress in Photovoltaics 2024 DOI: 10.1002/pip.383 [2] complemented by announcements of Longhi, Oxford PV, ISE Fraunhofer.

Industry Perspective on scalable fabrication of perovskite PV Karlsruhe Institute of Technology

Vapor Phase Deposition of Perovskite Photovoltaics: Short Track to Commercialization?

T. Abzieher, D. T. Moore, M. Roß, S. Albrecht, J. Silviac, H. Tan, Q. Jeangros, C. Ballife, M. T. Hoerantner, B. Kim, H. J. Bolink, P. Pistor, J. C. Goldschmid, Y.-H. Chiang, S. D. Stranks, J. Borchert, M. D. McGehee, M. Morales-Masis, J. B. Patel, A. Bruno, and **Ulrich W. Paetzold.**

- Why this Perspective?
 - Vast majority of research studies use solutionprocessing (> 98% of all articles).
 - BUT vapor phase deposition processes dominate today's established thin-film manufacturing in PV (>99%)."

Survey: Industry Perspective for Perovskite PV

Question: What deposition technique is on your technology roadmap? (*180/190 companies replied)

• Mixed viewpoint in industry: Perspectives both for vapor deposition and solution processing

Scalability – From Lab to Fab

Two process routes: evaporation and solution processing

PCEs above 18% can reproducibly be achieved at laboratory scale.

Highlight: All-evaporated Perovskite Solar Module

World's First All-evaporated Perovskite Solar Module

Geometrical Fill Factors of around 94%

PCEs above 15% on Device Areas above 50 cm²

D. Ritzer, T. Abzieher et al., *Progress in Photovoltaics* **30**(4), 360-373 (2021) T. Abzieher et al., *Advanced Functional Materials* **32**(42), 2104482 (2021)

Somm

80 mm

How to scale vapor phase deposition?

Basic Technology Assessment

Rate and number of linear sources and deposition rates most important!

- For high rates (> 700 nm/min), vapor deposition more competitive (in CAPEX and prod. costs)
- Presumable advantages of higher yield and reproducibility not considered

T. Abzieher et al., Energy & Environmental Science 17, 1645-1663 (2024)

Prof. Dr. U. W. Paetzold

Key Challenge: Low deposition rates of vaporprocessed perovskite absorbers

Co-evaporation

Sequential evaporation

Singe-source evaporation

- Today: Deposition rates are around 1-2 order of magnitude too slow
- Urgent need for novel approaches (source designs, material design, close-space sublimation, pulsed laser deposition, etc.)

Prof. Dr. U. W. Paetzold

Status and Outlook for Vapor Phase Fabrication Methods: How to Become a Game Changer?

- excellent homogeneity & high yield.
- Performance: closes gap between solution and vapor phase deposition
- established tool manufacturer industry (>99% of thin film PV manufacturing today).

Deposition rates too low (1-2 orderS of magn.)

Industry Survey:

- Importance of vapor phase deposition heavily underrated in academia.
- For high rates (> 700 nm / min), vapor deposition will be competitive (CAPEX and production costs).
- Deposition on textured surfaces, high production yield and reproducibility, simple integration into production lines warrant the use of vapor phase deposition

???

How to scale up to > 10,000 wafers

sample

Two process routes: evaporation and solution processing

Solution-Processed Perovskite Thin Film PV

Key Challenge: Several Entangled Processes Define the Perovskite Thin Film Photovoltaics.

I. A. Howard, T. Abzieher, I. M. Hossain, H. Eggers, F. Schackmar, S. Ternes, B. S. Richards, U. Lemmer, and U. W. Paetzold. *Advanced Materials* **31**(15), 1602807 (2019)

Inkjet-Printed Perovskite Solar Cells

Record performance by printed micrometer-thick perovskite absorber layers

SUNOVATION

H. Eggers et al. Advanced Energy Materials **10**(5), 1903184 (2020) F. Schackmar et al. Advanced Materials Technologies 6(2), 2000271 (2021)

- I. Howard et al. Advanced Materials **31**(26), 1806702 (2019)
- F. Mathies et al. ACS Applied Energy Materials 1(5), 1834-1839 (2018)
- R. Pesch et al. Solar RRL, 2400165 (2024), doi: 10.5445/IR/1000170051

Hybrid Inkjet-Printed Perovskite Top Solar Cells

• Hybrid two-step inkjet-printed perovskite thin films

- Spatially selectable picoliter-precise deposition of organics
- Drop-on-demand
- Drops per inch (DPI) key parameter

Perovskite/Si Tandem Solar Cells with Inkjet-Printed Perovskite Top Solar Cells

Slot-die Coated Perovskite Solar Cells

S. Ternes et al., ACS applied materials & interfaces 14(9) 11300-11312 (2022)

S. Ternes et al., Advanced Science 11(14), 2308901 (2024)

It is all about drying and controlling the crystallization!

41 K. Geistert et al., ACS Applied Materials & Interfaces 15(45), 52519-52529 (2023)

Prof. Dr. U. W. Paetzold

Stability

KIT - The Research University in the Helmholtz Association

Stability: Current Major Roadblock for Commercialization

Stability remains the MAJOR CHALLENGE:

- Identified as the major roadblock. But there needs to be more R&D focused on stability.
- To be competitive regarding LCOE and LCA, the degradation rate has to be < 0.5 % p.a. [1]
- Very few reports on long-term outdoor data. Best reported degradation rate >17% p.a. (small-area perovskite/silicon tandems, 1 cm², PCE_{init} = 21.4%, encapsulation) [2]

[1] E.Aydin, et al., Science 2024, DOI: 10.1126/science.adh3849.
[2] M. Babics, et al., Rep. Phys. Sci. 2023, DOI: 10.1016/j.xcrp.2023.101280.

Stability: Current Major Roadblock for Commercialization

ENCOURAGING PROGRESS:

Advances in stability performance of Perovskite/Si tandem soar cells

[1] L. Duan et al., *Nat Rev Mater* 2023, DOI: 10.1038/s41578-022-00521-1.

Stable high-efficiency perovskite/Si tandems with certified PCE of 33.7% achieve T90 > 1000h MPP tracking at 25 °C: T_{90} > 1000 h $\int_{\text{bottom cell}} \frac{1}{1000} \int_{\text{bottom cell}} \frac$

Time (h)

[1] Ugur et al., Science 2024, DOI: .

[2]

Stability: Current Major Roadblock for Commercialization

ENCOURAGING PROGRESS:

Advances in stability performance of Perovskite/Si tandem soar cells

HZB Helmholtz Zentrum Berlin

Year [1] L. Duan et al., Nat Rev Mater 2023, DOI: 10.1038/s41578-022-00521-1. Courtesy to C, Ulbrich and M. Khenkin, HZB, 2024.

Prof. Dr. U. W. Paetzold

Stability Research at KIT

Stability of perovskite solar cells: impact of stoichiometry and morphology

Challenge: stabilize under all conditions

Understand dynamics of simultaneous effects

R. Singh et al., ACS Applied Materials & Interfaces 16(21), 27450-27462 (2024).

Prof. Dr. U. W. Paetzold

ML Methods

KIT - The Research University in the Helmholtz Association

Machine Learning & Scalable Processing @ KIT

F. Laufer et al., Sol. RRL, 2201114 (2023) Klein, Ziegler, Laufer et al., Adv. Mater., 2307160 (2023) Laufer et al., under review (2024)

In situ multi-channel PL imaging

ML-based in situ characterization

Machine learning enables learning the relationship between input data features and the target variables

0.56

0.84

Laufer et al., under review (2024) 50

Prof. Dr. U. W. Paetzold

Explainable AI Methods

Many thanks to...

... the Perovskite Taskforce at KIT.

- ... all collaboration partners.
- ... the funding organizations.

