

The astronomical theory of palæoclimates

Michel Crucifix

Institut d'Astronomie et de Géophysique G. Lemaître

Université catholique de Louvain

Belgium

J. J. Imbrie, et al. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δO18 record. In A. Berger et al., ed., *Milankovitch and Climate, Part I*, pages 269–305, Norwell, Mass., 1984. D. Reidel.

James Croll (1875)

Milutin Milankovitch (1930)

Université catholique de Louvain UCL Outline What is climate? -Calculation of orbital parameters and insolation Deductive and inductive models of climate Current challenges

The climate system

Timescales UCL Univer-											Université catholique de Louvain		
Processes	weather land surface ocean mixed layer sea ice volcanos vegetation thermocline mountain glaciers deep ocean ice sheets orbital forcing tectonics weathering	days h/d h/d		m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Til ye: y	mes ars 10 y	cale tho 10 ² y	ousanc years 10 ³ y	ds of 10 ⁴ y	n 10 ⁵ y		s of s of	
	solar "constant"	fron	1:.	J. N	lar	shall	and	A. P	lumb	, lect	ure r	notes] , MIT

An astronomical explanation to the quaternary glaciations

Modelling climate :

deductive and inductive climate models

Université General circulation models (deductive) UCL catholique de Louvain allow to quantify the surface response Temperature change when insolation of 6,000 years ago Min -1,72299 Max 1.24557 90N 0.25 45N Eq ·) 25 -0.25 45S Palaeoclimate Modelling Intercomparison Project 90S -90W 90E 180W 180E

-0.25

0.25

-0.5

0.5

1

2

3

-3

-4

-1

-2

Co	onclusions from GCMs
	Confirm that the impact of the astronomical forcing on the surface climate is significant
	Simple thermodynamical responses (snow melt, sea-ice reduction, ocean warming) but radiative feedbacks
	More complex dynamical responses
	• monsoon
	• variability modes (ENSO)
	Ingredients for
	• interactions between time-scales and between components
	Achille heel : GCM cannot be integrated over long time scales

The Imbrie and Imbrie (1980) conceptual UCL Catholique de Louvain model

 I_{65} : Top-of-the-atmosphere insolation at $65^{\circ}N$ at the summer solstice

$$V$$
 : Ice Volume

$$\frac{dV}{dt} = \begin{cases} \frac{1+b}{T_m}(-I_{65} - V) & \text{if } x \ge y \\ \frac{1-b}{T_m}(-I_{65} - V) & \text{if } x < y \end{cases}$$

Ice volume driven by summer insolation but different characteristic times for glacial inception and deglaciation

Université catholique de Louvain

- μ : CO₂ concentration
- heta : Deep-ocean temperature

$$\dot{V} = -V - \mu - v\theta - uI_{65}$$

$$\dot{\mu} = -p\theta + r\mu + s\theta^2 - w\mu\theta - \theta^2\mu$$

$$\dot{\theta} = -q(V + \mu)$$

B. Saltzman and K. A. Maasch. A first-order global model of late Cenozoic climate. Trans. R. Soc. Edinburgh Earth Sci, 81:315–325, 1990.

Current challenges

Current challenges

- Quantify climate-carbon cycle interactions
- Mechanisms of instability.
 - What causes the system to "dislike" having a high ice volume ?
- Mechanisms of stability
 - Identify mechanisms that stabilise its evolution to produce long and stable interglacials (like 400 000 years ago)
- Interactions of the orbital forcing with the longer time scales
 - apparition of glacial cycles around ~ 3 Ma
 - transition from 41k-oscillations to 100k-oscillations around 1 Ma ago
 - no full interglacial between 800 k and 400 k, but mégamonsoons
- Interactions of the orbital forcing with the shorter time-scales