

Materialforschung für Dünnschichtphotovoltaik-Status und neue Entwicklungen

Uwe Rau

Institut für Energieforschung 5 – Photovoltaik-Forschungszentrum Jülich GmbH

- 1. Marktentwicklung
- 2. Solarzellentechnologien und allgemeine Prinzipien
- 3. Dünnschichttechnologien (CIGS,CdTe, a/μc-Si)
 Forschungsbeispiele

Solar PV Global Production and Cost per Watt

Source Solar Buzz, Company reports,, Green Econometrics research

Thin-film module manufacturers

source: PHOTON International 3/2008

DPG 2010

Institut für Energieforschung 5 – Photovoltaik

iSuppli Corp: Percentage of Solar Panel Production in Terms of Watts by Technology (Thin-Film vs. Crystalline)

Photovoltaic technologies (and their working principles)

Different types of solar cells

Excitonic and bipolar (classical) solar cells

Gregg and Hanna, J. Appl. Phys. 93, 36050 (2006) grain for schung 5 – Photovoltaik

General charge separation scheme

U. Rau et al., J. Phys. Chem B (2003) DPG 2010 K. Schwarzburg et al., Coord. Chem. (2005).

pin-type and pn-type devices

pn-type

 $E_{\rm C}$

 $E_{\rm v}$

► X

T. Kirchartz, J. Mattheis, U. Rau, Phys. Rev. B 78 (2008) DPG 2010

Institut für Energieforschung 5 – Photovoltaik

a

+

Dominant currents at junction (x=+0)

T. Kirchartz, J. Mattheis, U. Rau, Phys. Rev. B 78 (2008) DPG 2010

Institut für Energieforschung 5 – Photovoltaik

Thin-film photovoltaic technologies

Thin film PV technologies

Solar cell efficiencies (Labscale)

Efficiency limits

Schematic representation of a CIGS module fabrication process.

Absorber deposition CIGS solar cells

Cu-poor and Cu-rich CuInGaSe₂

Photoluminescence of CulnGaSe₂

S. Zott, K. Leo, M. Ruckh, H.W. Schock, J. Appl. Phys. 82 (1997)

Institut für Energieforschung 5 – Photovoltaik

Band diagram (CulnGaSe₂)

Recombination mechanisms

$$V_{OC} = \frac{E_a}{q} - \frac{nkT}{q} \ln\left(\frac{j_{00}}{j_{SC}}\right)$$

(A): Interface recombination

$$E_a = \Phi_b$$

(B-D): Volume recombination $E_a = E_g$

Recombination mechanisms

M.Turcu, O. Pakma, U. Rau, Appl. Phys. Lett. 80 (2002)

Recombination mechanisms

 $Cu(In_{1-x}Ga_x)(Se_{1-y}S_y)_2$ Cu(In,Ga)(Se,S)₂ x=0 CdS Cu-poor x~0.25 0 1.6 y=0 Δ Activation Energy E_a (eV) 0 1.4 O Φ_{b}^{p} 1.2 x~0.25 1.0 Cu-rich $\Delta \Phi_{\rm b}$ x=0 Cu-poor 0.8 surface 1.0 1.2 1.6 1.4 layer Band Gap Energy E_{a} (eV)

M.Turcu, O. Pakma, U. Rau, Appl. Phys. Lett. 80 (2002)

Cu(In,Ga)(Se,S)₂ research issues

DPG 2010

Process sequence for CdS/CdTe solar cells

Front contact deposition

Sputtering or Chemical Vapor Deposition (CVD)

SnO₂

alass

back contact

CdS deposition

CdS deposition

W. Jaegermann, A. Klein, T. Mayer, Adv. Mat. . **21** (2009)

Institut für Energieforschung 5 – Photovoltaik

CdS/CdTe research issues

a-Si/µc-Si thin-film tandem solar cell

a:Si:H/µc-Si:H phase transition

L. Houben, Dissertation, FZJ (IFF/IPV), Uni Düsseldorf O. Vetterl et al., Sol. Energ. Mat. Sol. Cells 62 (2000) 97-108

Multi-junction solar cells

Optimized ZnO for light trapping

Simulations: Tandem cells on textured ZnO:Al

DPG 2010 K. Ding, Master Thesis, RWTH Aachen

Institut für Energieforschung 5 – Photovoltaik

Absorptance distribution

Loss analysis (0V)

III: Thickness dependence

Tandem Solar Cell with Intermediate Reflector

Requirements for the Intermediate Reflector:

- sufficient conductance
- low absorption
- low refractive index to achieve high refractive index difference between Si and SiO_x

SiO_x intermediate reflector

C. Das, et al., Appl. Phys. Lett. 92 (2008)

Scanning near-field optical microscopy

Effect of micro-/nano-structures of textured ZnO on local optical properties Analyzed by Scanning Near field Optical Microscopy

aSi/µcSi research issues

Conclusions

- Photovoltaics has become a billion € business .. on a partly (but then heavily) subsidized market
- Political goals can be met (on the technological level)
- Cost reduction is still (and more than ever) a major issue
- Challenges for thin-film technologies:
- \rightarrow Close the gap between lab and production scale efficiencies
- \rightarrow Faster and more reliable production methods

 \rightarrow Improved scientific understanding of optics, materials and interfaces