



# Plasma- Wand- Wechselwirkung als Schlüsselthema auf dem Weg zum Fusionsreaktor

**Bernhard Unterberg** 

Arbeitskreis Energie der Deutschen Physikalischen Gesellschaft Bonn, den 15. März 2010

b.unterberg@fz-juelich.de





#### **Energie- und Teilchenabfuhr (He – Asche)**

ITER



Magnetfeld:

- Einschluss des Plasmas
- Ablenken des Plasmas (und der Energie in geladenen Teilchen) auf Wandkomponenten
  - Teilchenabfuhr ③
  - ➢ Wärmeabfuhr ⊗



# Neue Herausforderungen für die Forschung<sup>EORSCHUNGSZENTRUM</sup> zur Plasma- Wand- Wechselwirkung

Der Schritt von heutigen Fusionsexperimenten zu ITER und DEMO:

- Deutlich höhere Teilchen- und Wärmeflüsse auf die Wandkomponenten
- Tritium und toxische Wandmaterialien (Be in ITER)
- Aktivierung der Wandmaterialien durch 14 MeV Neutronen (DEMO!)

#### Ziel dieses Vortrags:

Darstellung der aktuellen Fragestellungen, Strategien zu ihrer Lösung und den wichtigsten Experimenten zur Plasma- Wand- Wechselwirkung





# Schlüsselfragen zur Plasma- Wand-

- Die Lebensdauer der Plasma begrenzenden Wandkomponenten
- Die Produktion von Staub durch Wanderosion
- Das Inventar von Tritium im Vakuumgefäß
  - Verfügbarkeit und Sicherheit des Fusionsreaktors
  - Die Verfügbarkeit bestimmt wesentlich die Ökonomie des Fusionsreaktors

"power plant conceptual study" (EFDA 2005)\*

$$coe \propto \left(\frac{1}{A}\right)^{0.6} \frac{1}{\eta_{th}^{0.5}} \frac{1}{P_e^{0.4} \beta_N^{0.4} N^{0.3}}$$

A: availability  

$$\eta_{th}$$
: plant efficiency  
 $P_e$ : net electric power  
 $\beta_N$ : normalised plasma pressure  
N: normalised Greenwald density

\* http://www.efda.org/eu\_fusion\_programme/downloads/scientific\_and\_technical\_publications/PPCS\_overall\_report\_final.pdf





### Wandmaterialien in Fusionsanlagen

Historische Entwicklung der Wandmaterialien

- Metalle (Inconel)
- Niedrig-Z Beschichtung: Karbonisierung, Borierung, Silizierung (Pionierarbeit am Tokamak TEXTOR im Forschungszentrum Jülich)
  - Erweiterung des Betriebsbereich (weniger Sauerstoff, geringere Strahlungsverluste)
- Beryllium (JET)
- Hoch-Z Wand: Molybdän in Anlagen mit hohem Magnetfeld (Alcator- Cmod, FTU), <u>Wolfram</u> (Pionierarbeit am ASDEX-Upgrade im Max-Planck- Institut für Plasmaphysik, Garching)





#### (Stationäre) Energieabfuhr im Divertor



- Strahlungskühlung durch Verunreinigungen in der Randschicht und im Divertor
- Reduktion des Plasmadruckes entlang B durch Reibung notwendig ("detachment")
  - > Wärmelastverhalten des Wandmaterials
  - Günstig: *Wolfram* (höchster Schmelzpunkt), *Kohlenstoff* (nur Verdampfung)
  - $\succ$  Limit: q = 10 MWm<sup>-2</sup>





#### **Transiente Wärmelasten**

- Edge localised modes

   (ELMs) periodische
   Instabilitäten am
   Plasmarand → transiente
   Wärmepulse und
   Teilchenpulse auf die Wand
- Disruptionen Abriss des Plasmastroms im Tokamak
   → abrupter Verlust der gespeicherten Energie auf die Wand
- > Lageinstabilitäten

| ITER       | Energie-<br>verlust<br>auf die<br>Wand<br>E / MJ | Energie-<br>dichte im<br>Divertor<br>E <sub>DIV</sub><br>(MJ m <sup>-2</sup> ) | Schmelz-<br>parameter*<br><sup>E</sup> melt<br>(MJm <sup>-2</sup> s <sup>-1/2</sup> ) |
|------------|--------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| ELM        | 20                                               | 9.5                                                                            | 601                                                                                   |
| Disruption | 88-175                                           | 3.1 - 12.5                                                                     | 322                                                                                   |

Zum Vergleich: W schmilzt bei  $\varepsilon_{melt} \ge 48 \text{ MJm}^{-2}\text{s}^{-1/2}$ 

\* Temperaturerhöhung auf Schmelztemperatur nach  $\Delta T \sim P \sqrt{t}$ 





#### Materialschäden durch transiente Wärmelasten

Bridging of gaps due to melt motion, 100 shots @  $w = 1.6 MJ/m^2$ 



Wolfram

Quasi stationary plasma accelerator, Troitsk, Russia (A. Zhitlukhin et al., J. Nucl. Mater. 363-365 (2007), 301.)





### Materialschäden durch transiente Wärmelasten – Verlust der Schmelzschicht durch Wegspritzen

Experimente am Tokamak TEXTOR: W- Testlimiter, Exposition bis zu 30 MWm<sup>-2</sup>



Bewegung der Schmelze dominiert durch jxB Kraft

J. Coenen et al.

#### $\sim 20 MW/m^2$













#### Schmelzverluste vom Wolframlimiter in TEXTOR



Terminierung der Plasmaentladung durch Disruption





#### Materialschäden durch transiente Wärmelasten







## Teilchenflüsse auf die Wandkomponenten in ITER (Extrapolation und Modellierung)







#### Erosion von Fusionsmaterialien für Wandkomponenten







### Wandmaterialien in ITER



- Erste Wand: Beryllium
  - Niedrig Z,
     Sauerstoffkontrolle
- Divertor- Baffle: Wolfram
  - Niedrige
     Zerstäubungsausbeute
- Divertor- Target: Kohlenstoff (CFC)
  - Kein Schmelzen, tolerant gegen Wärmeexkursionen
- Divertortarget für DD- und DT-Betrieb: Wolfram





#### Abschätzung der Lebensdauer von Divertor und erster Wand in ITER (Roth et al. J. Nucl. Mater. 390-391(2009), 1- 9)

Average and peak erosion rate for the ITER first wall, and associated PFC lifetime.

| Wall material                            | Erosion<br>rate<br>(nm/s) | Erosion<br>source<br>(atoms/s) | Eroded<br>material<br>(g/shot) | Lifetime<br>(shots)              |
|------------------------------------------|---------------------------|--------------------------------|--------------------------------|----------------------------------|
| Be (C) average<br>peak 50 m <sup>2</sup> | 0.1<br>4                  | $8\times 10^{21}$              | 48                             | 20 000<br>5000                   |
| W average<br>peak 50 m <sup>2</sup>      | 0.01<br>0.1               | $2\times 10^{20}$              | 26                             | 200 <i>000</i><br>20 <i>0</i> 00 |

Gross and net erosion rate for the ITER divertor, and associated PFC lifetime.

| Divertor<br>mat. |              | Erosion rate<br>(nm/s) | Erosion source<br>(atoms/s)                                     | Eroded material<br>(g/shot) | Lifetime<br>(shots)                         |
|------------------|--------------|------------------------|-----------------------------------------------------------------|-----------------------------|---------------------------------------------|
| CFC              | Gross<br>Net | 100<br>1               | $\begin{array}{l} 4\times10^{22} \\ 4\times10^{20} \end{array}$ | 330<br>3                    | 200<br>20 000                               |
| W                | Gross<br>Net | 2<br>0.3               | $\begin{array}{l} 4\times10^{20}\\ 6\times10^{19}\end{array}$   | 48<br>7                     | $\begin{array}{c} 10000\\ 60000\end{array}$ |





## Lebensdauer der Wandkomponenten gemischte Materialsysteme

- Mischung durch Migration (Erosion und Deposition) des Wandmaterials
- > Ausbeute für Re-Erosion von deponierten Schichten
- Synergetische Effekte
- Validierung von Modellen f
  ür die Extrapolation zu ITER







#### "ITER-like wall" im Tokamak JET (ab 2011)









#### **Die Wolframwand in ASDEX-Upgrade**



Fortschreitender Ausbau der Wolfram- Bedeckung



heute

R. Neu et al., J. Nucl Mater 67-70 (2007) 1497





# **Lebensdauer der Wandkomponenten** – **Erosion durch transiente Ereignisse (ELMs, Disruptionen)**







# Erosion und Staubbildung – wichtige Fragestellung der PWW Forschung

- Sicherheitsrisiken durch Staubbildung
  - Kalter Staub T inventar
  - Heißer Staub / Staub auf heißen Oberflächen – Explosionsgefahr bei Luft / Wasserdampfeinbrüchen
- Konversionsfaktor Staubmenge / Erodierte Stoffmenge:
  - ~ 0.1 (heutige Experimente)
  - ~ 1 (konservative Abschätzungen)



Staubpartikel aus amorpher a-C:H Schicht in TEXTOR D. Ivanova et al., Phys. Scr. **T138** (2009) 014025 (6pp)







#### **Tritiuminventar**

- Sicherheitsrisiko im
   Fusionsreaktor (Freisetzung)
  - Ko-Deposition
  - Implantierung
- Oberflächentemperatur wichtiger Parameter
- Zusätzliche Fehlstellen durch Neutronenschädigung erhöhen Inventar (DEMO!)



J. Roth et al., J. Nucl.Mater. 390-391 (2009) 1-9



Unterdrückung der Wasserstoffrückhaltung

### mit fortschreitender Bedeckung der ASDEX-Upgrade Wand mit Wolfram







#### Schlussbemerkungen

- Im Hinblick auf die PWW- Fragestellungen Lebensdauer der Wandkomponenten, Staubbildung und Tritiuminventar ist Wolfram das am besten geeignete Wandmaterial für Fusionsanlagen.
- Die Entwicklung von dazu kompatiblen Plasmaszenarien (ohne Disruptionen, mit stark abgeschwächten ELMs, mit gutem Energieeinschluss, …) bleibt eine Herausforderung und wird an magnetischen Einschlussexperimenten bewältigt (JET, ASDEX-Upgrade).
- Spezifische Fragestellungen zur PWW (insbesondere zum Einfluss der Neutronenschädigung von Wandmaterial) können am besten in Plasmasimulatoren und Wärmelast-Experimenten beantwortet werden.





#### Ausblick: Neuer Programmschwerpunkt im FZJ -"Plasma-Wand-Wechselwirkung in nuklearer Umgebung"

- Test von <u>Neutronen bestrahlten und toxischen</u> <u>Wandmaterialien</u> unter Wärmelast und Plasma- Exposition
- Ziel: Charakterisierung des Einflusses der Neutronenbestrahlung auf:
  - Thermo- mechanische Eigenschaften von Wandmaterialien (Ermüdung, Schockbelastung)
  - PWW Prozesse (Erosion, Brennstoffrückhaltung und Staubbildung)
- > Elemente des Programms:
  - Lineare Plasmaanlage in einer Heißen Zelle (JULE-PSI) mit integrierter Analysestation
  - Wärmelasttests mit einer Elektronenstrahl Anlage in einer Heißen Zelle (JUDITH)
  - Oberflächenanalyse in einer Heißen Zelle (Heißes Materiallabor)



