Neutronics experiments for validation of activation and neutron transport data for fusion application at the DT neutron generator of TU Dresden

A. Klix1, A. Domula2, U. Fischer1, D. Gehre2, J. Henniger2, D. Lebrun-Grandie1, D. Leichtle1, M. Sommer2

1Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology
2Technische Universität Dresden, Institute for Nuclear and Particle Physics
Outline

- Brief comments on history of the lab
- Context of the fusion-related experiments
- Recent blanket mock-up experiments
- Experiments for validation of activation cross sections
• New neutron laboratory of TUD was constructed in the early 2000s
• Successor of the neutron laboratory of TUD located in the city of Pirna-Copitz
• Neutron generator: DD operation since 2004, DT operation since 2005

Current utilization:

→ For activation experiments relevant for double-beta decay (see A. Domula: HK 55.4, Thursday HG VI)
→ Validation experiments for activation data libraries (EAF-2007, others) and neutron transport data libraries (JEFF, FENDL) in the frame of the European fusion program (EFDA / Fusion for Energy) (this talk)
Important nuclear parameters for fusion reactor blankets

- Tritium production rate / Tritium breeding ratio
- Nuclear heating
- Shielding capabilities
- Material activation
- Gas production
- others

Data libraries require validation

→ mock-ups irradiated in well-characterized DT neutron fields
Accelerator: 300 kV, 10 mA
- up to 10^{12} n / s
- continuous or pulsed operation
- fixed and rotating T-Target

Targets:
- Tritium: 3, 30, 250 Ci
- Deuterium
HCPB TBM mock-up experiment

Collaboration with
ENEA Frascati, FZ Karlsruhe, TU Dresden, FNS/JAEA

Sample holder inserts
NE-213 / 3He detector positions

Li$_2$CO$_3$
DT neutron source

Beryllium

15.8 cm
31 cm

15.8 cm
31 cm
Mock-up consists of layers of LiPb, Eurofer and polyethylene Detectors placed along the axis of the mock-up

MCNP model: Detailed description of the neutron source and the detectors (Li$_2$CO$_3$ pellets and all LiF-TLD)
HCLL mock-up experiment: Set-up for the measurement of fast neutron and gamma-ray fluxes

Left: NE-213 detector (1.5"x1.5 ")
Right: Ti-T target of neutron generator
Middle: Mock-up

Two measurement position have been used. Only one channel was present at a time.
HCLL TBM mock-up experiment
Fast neutron flux spectra

Pulse height spectra recorded with the NE-213 detector
Unfolding with MAXED code, response matrix (validated at PTB)
Calculations with MCNP5 and JEFF-3.1.1 and FENDL-2.1
Normalization of unfolded spectra by fitting 14 MeV peak height
Pulse height spectra recorded with the NE-213 detector
Unfolding with MAXED code and response matrix
Calculations with MCNP5 and JEFF-3.1.1 and FENDL-2.1
Normalization from neutron spectrum
Activation behavior of fusion reactor materials central topic for safety-related issues and decommissioning

- Most induced activation from slow neutrons (cross sections large) and fast neutrons (many open reaction channels)
- Assessment of induced activities usually based on inventory codes and activation data libraries

This work:

- Activation of **titanium** with DT neutrons and comparison with calculated values from **EASY-2007** (FISPACT and EAF-2007) for the isotopes contributing most to the contact dose rate
- Titanium contained in several materials in the blanket, for example Li\(_2\)TiO\(_3\)
Calculation with FISPACT-2007 and EAF-2007

Assuming 1 year of irradiation with 1 MW/m² wall load (primary neutrons)

Li₂TiO₃
important isotopes 48Sc, 46Sc, 42K
recycling limit after about 3.2 yr
hands-on-limit after about 17.7 yr

Titanium only
important isotopes 48Sc, 46Sc, 42K
recycling limit after about 4.4 yr
hands-on-limit after about 109 yr
Irradiation of Ti sample in fusion peak field of DT generator

Sample size: 1 cm2 x 0.5 mm thick
Irradiation time: 2.46 hrs, fluence 5.41×10^{11} n/cm2
Measurement: γ-ray spectra at several times after irradiation with HPGe spectrometer

Set-up

Si detector (Monitor)
(d-beam)
Tritium target
Ti sample
Monitor foil (Nb+Zr)
Preparation for experiments with Neutronics TBM in ITER

Detector development and testing

Neutron flux by dosimetry reactions
- selection of suitable sets of foils (short and long irradiation time)
- testing of gamma activation measurement regime
- practical demonstration of automated system

Status
- system is currently set up at TUD-NG
- investigation of suitable foil sets for different measurement regimes (i.e. 10..30 sec, entire pulse, several pulses) underway
Thank you very much for your attention!

The HCLL mock-up experiment, supported by the European Communities under the contract of Association between EURATOM and Forschungszentrum Karlsruhe, was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The titanium activation experiment was supported by Fusion for Energy under the grant contract No. GRT-014 (ES-AC). The views and opinions expressed herein reflect only the author’s views. Fusion for Energy is not liable for any use that may be made of the information contained therein.