Efficiency Enhancement of Bulk-Heterojunction Hybrid Solar Cells

Michael Krüger, Yunfei Zhou, Michael Eck Freiburg Materials Research Centre (FMF), University of Freiburg, Germany Institute for Microsystems Technology (IMTEK), University of Freiburg, Germany

Email: <u>michael.krueger@fmf.uni-freiburg.de</u> http://www.fmf.uni-freiburg.de/~nanoscience

UNI FREIBURG

DPG Conference, Session AK 11.2 TU Dresden, 16.03.2011

Bulk-Heterojunction Hybrid Solar Cells

- I. Device Structure and working principle
- **II.** Materials and potential applications
- III. CdSe nanocrystals based solar cells
 - a) Synthesis of quantum dots
 - b) Photoactive hybrid films
 - c) Solar cell performances
- IV. Outlook

Bulk-Heterojunction Hybrid Solar Cells

Donor Acceptor Materials

Review: Yunfei Zhou, Michael Eck, Michael Krüger, Energy Environ. Sci. 3, 1851-1864, (2010)

Donor	Acceptor	PCE
Polymer	C ₆₀ derivative	~8% ¹
Polymer	Nanocrystals (e.g. CdSe)	~3% ²
Polymer	Polymer	~2% ³
Small molecules / small molecules $\sim 8 \sim \%^4$		

¹ www.konarka.com, accessed on December 3, 2010.
 ² Dayal et al. Nano Lett. 10, 239-242 (2010).
 ³ He et al. Nano Lett. 10, 1302 (2010).
 ⁴ Heliatek (2010)

Bulk-Heterojunction Hybrid Solar Cells

Donor Acceptor Materials

Review: Yunfei Zhou, Michael Eck, Michael Krüger, Energy Environ. Sci. 3, 1851-1864, (2010)

Nanocrystals as electron acceptor material

Quantum Dot Synthesis: Hot Injection Method

Precursors: Cd-Stearat, Se-TOP Ligands: HDA/TOPO Temperature: 300 °C

CdSe Core

- Diameter: 2-10 nm
- Size dependent physical properties
- Quantum confinement effect

Ligand Shell

- Colloidal stabilization
- Prevent aggregation
- Maintain optical properties

Comparison of CdSe QD / P3HT and CdSe QD / PCPDTBT

Acknowledgment

PV Team

- Yunfei Zhou, Michael Eck
- Synthesis Team, light converting films
 Frank Riehle, Ying Yuan, Simon Einwächter (microwave synthesis)
 Partners
- FhG ISE (Freiburg): device characterization (B. Zimmermann, C. Veit))
- Bayer Technology Services, Bayer Material Science (material delivery)
- Uni Wuppertal, Germany (group of Prof. Scherf: PCPDTBT polymer)
- Financial support from:
- DFG Graduate School 'Micro Energy Harvesting'
- BMBF Project "NanoPolySol" (German Ministry of Science and Education)

Thank you for your attention!