Hochkonzentrierende Photovoltaik: Stand der Entwicklung und Perspektiven

Andreas W. Bett

Fraunhofer Institut für Solare Energiesysteme ISE, Freiburg, Germany www.ise.fraunhofer.de

DPG Frühjahrstagung, AK Energie Dresden, 16. März 2011

Electricity Costs and Feed-in Tariff in Germany

Source: B. Burger, "Energiekonzept 2050", June 2010, FVEE, www.fvee.de, Update of 29.09.2010

Photovoltaics Standard PV and Concentrating PV

Light collection and conversion is one unit

3

© Fraunhofer ISE

Photovoltaics Standard PV and Concentrating PV

FLATCON[®]-Module developed at ISE

Light collection and conversion is one unit

Concentration Factor = collection / cell area

Light conversion

cell area

The Concentrating PV Technology (CPV) It is a System Approach

The Concentrating PV Technology (CPV)

There are many technical solutions to realise CPV systems!

→ many companies started their business

Classification of CPV Systems Low and High Concentration

Concentration: < 100 Si-cells static or one-axis

Euclides, Tenerife

Concentration: > 300 III-V-cells two-axis

FLATCON, FhG ISE / Concentrix

The Concentrating PV Technology (CPV) Cell

Why Multi-Junction Solar Cells? Reduce the Thermalisation and Transmission Losses! Increase the Efficiency!

Why Multi-Junction Concentrator Solar Cells? Shockley-Queisser Limit for Solar Cells

- $\Rightarrow \eta \text{ increases with} \\ \text{number of cells}$
- J_{SC} increases linearly with concentration
- V_{oc} increases logarithmically with concentration
- $\Rightarrow \eta \text{ increases with} \\ \text{concentration}$

III-V-based Triple-Junction Solar Cell The Structure

- 19 layers
- doping levels:
 - $5*10^{16} 2*10^{20} \text{ cm}^{-3}$
- thicknesses:
 - $0.02-4.0\ \mu m$
- layer compositions:
 - binary quaternary As/P hetero-interfaces

		front contact ARC cap layer
	GaInP	n-GalnP - emitter GalnP - undoped layer p-GalnP - base 1.9 eV
	tunnel diode	p+-GanP - barrier layer p+-AlGalnP - barrier layer p++-AlGaAs n++-GaAs or GalnP n+-AlGalnP/AllnAs - barrier layer
	GalnAs	n-GanAs - emitter GalnAs - undoped layer 1.4 eV p-GanAs - base
	tunnel diode	p+-GalnAs - barrier layer p+-AlGalnAs - barrier layer p+-AlGaAs n++-GalnAs
	Ge	n-gradedGa _{1-x} In _x As buffer layer <u>n- dopedwindow- and nucleation layer</u> n-Ge diffused emitter p-Ge substrate (100) 0.7 eV
		rear contact

Terrestrial Concentrator Solar Cells Development of III-V-based Solar Cell Efficiencies

13

Metamorphic Triple-Junction Solar Cell at ISE

Advanced III-V Solar Cell Concepts Under Investigation at Fraunhofer ISE

First 6-Junction Solar Cells Realized

The Concentrating PV Technology (CPV) Optics

Examples of Concentrating Elements A Plurality of Designs

Development goals: high optical efficiencies and homogenous illumination of the cells

Manufacturing Fresnel Lenses at ISE Development of the Silicone-on-Glass Technology

48 lenses are formed in a 0.2 mm thin Silicone film on a glass superstrate

Nothing is perfect....

Peak and averaged System Efficiency are influenced by.....

- Chromatic aberration
- Stray light from primary optics
- Circumsolar irradiation
- Assembly accuracy

Photo visualize the chromatic aberration of a Fresnel lens

_

Improvements by use of Secondary Optics

Secondaries: First Prototypes

- Reflective Secondaries
- Material choices: metal-coated polymer, aluminium, stainless steel
- Surface: Al, Ag, with protective coating
- Shape: conical, parabolic, combinations

Solid (Refractive) Secondaries

- Material choices: glass, silicone, polymer
- Shapes: compound parabolic, conical lens/aspheric, combinations

Experiment: FLATCON® with/without Secondary Optics

© Fraunhofer ISE

23

FLATCON[®] Test Module: Indoor Measurement Modules with/without Secondary Optics

 Acceptance angle measurement show the benefit of the secondary optics

FLATCON[®] Test Module: Long-Term Comparison Modules with/without Secondary Optics

Measurement period: May 5th 2008 – Sept. 30th 2008 ~ 6200 measurements

 Better I_{sc} and η for module with secondary optics

FLATCON[®] Test Module: Long term Comparison Modules with/without Secondary Optics

The Concentrating PV Technology (CPV) Module, Manufacturing and System

Module and Process Development for CPV Concentrator Technology & Evaluation Center

- Development of subassemblies and modules based on the "Design for Manufacturing" philosophy
- Industrial-type equipment for development of high volume processes:
 - die bonding
 - reflow process
 - Heavy- & thin-wire bonding

ConTEC - Concentrator Technology & Evaluation Center Assessment of Reliability

- Investigations on sub-components and module components
- Front contact:
 E.g. ultrasonic bonding with Au and Al wires
- Back contact: e.g. soldering or electrically conductive adhesives
- Accelerated ageing

front contact → wire bond

29

© Fraunhofer ISE

Module Development

Thermal and Mechanical FEM-Simulation

- Boundary conditions in CPV-Systems: Handling of energy densities >100 W/cm² is necessary
- Simulation of temperature distributions allows for:
 - Estimation of temperature in the components, thermal expansion and mechanical stability
 - Optimization of the design e.g. heat spreaders
 - Comparison to in- and outdoor measurements

ConTEC - Concentrator Technology & Evaluation Center Module Development for High Concentrator Systems

For Point Focus Systems

- Fresnel lens as primary optics
- Geometrical concentration factors 350 - 500x
- Passive cooling of the heat sink

FLATCON® Fresnel Lens All-Glass Tandem Cell **Concentrator**

Source: Concentrator System Zenith Solar

For Central Receiver

- **Optics:** mirror
- Concentration factors 500 to >1000
- Dense array receiver
- Active cooling \rightarrow use of thermal energy

Co-generation of Electricity and Heat Total System Efficiency > 70 %

Solar dish-based CPV system using MIM cells developed at ISE. Zenith Solar launched the first systems, April 2009, Kibbutz Yavne, Israel

32

© Fraunhofer ISE

CPV Power Stations 100 kW Units in Puertollano and Seville in Spain 1 MW in USA, 150 MW in USA (planned)

Puertollano La Nava 1 100 kW_{nom} grid connected end of September 2008

Casaquemada 100 kW_{nom} grid connected end of September 2008

Averaged AC-System Efficiency > 22 %, max > 25 %

The Promise of CPV in the Future Price and Market

CPV is at the "starting" point

Threat:

- bankability

Opportunities:

- CAPEX

- land use

Source:

http://www.eupvplatform.org/ fileadmin/Documents/ PVPT_SRA_Complete_070604.pdf

High Concentration PV is **GREEN**

Ref: G. Peharz et al, PIP, 2005, 13, p. 627-634

Conclusions

- CPV systems offer a wide range of promising designs
- III-V-based multi-junction solar cells exceed the 42 % efficiency margin
- CPV power plants achieved an AC-operating efficiency of 25 %
- CPV shows great promise for cost-efficient and green energy production

We acknowledge the important contributions of all our collaborators, as well as financial support by:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

36

Thank you for your attention!

Fraunhofer Institute for Solar Energy Systems ISE

Dr. Andreas Bett

www.ise.fraunhofer.de www.III-V.de andreas.bett@ise.fraunhofer.de

