

The Physics of Wind Park Optimization

Stefan Emeis stefan.emeis@kit.edu

INSTITUTE OF METEOROLOGY AND CLIMATE RESEARCH, Atmospheric Environmental Research

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Energy from the wind

 $P \le \frac{16}{27} \frac{1}{2} \rho A v^3$

Ρ	power	W
ρ	air density	kg m⁻³
Α	rotor area	m ²
V	wind speed	m s⁻¹
16/27	Betz' factor	-

but is it this simple? ...

2 16.03..2011

Prof. Dr. Stefan Emeis – The Physics of Wind Park Optimization

Wind Energy Research Alliance Wind Energy Research Alliance Meteorological phenomena effecting energy generation from the wind (yields and loads)

phenomenon	effect on yield	effect on loads
vertical wind profile	increase with growing hub height	increase with growing hub height
shear layers (inversions)		differential loads
low-level jets	nocturnal maxima	nocturnal maxima
extreme winds	shut-down of turbines	extreme loads, immediate damages
turbulence intensity	higher yields reduced wake lengths	higher loads
turbulence profile with height		differential loads
3 16.032011 Prof. Dr. Stefan Emeis – The	Physics of Wind Park Optimization Ins	titute for Meteorology and Climate Research – Atmospheric Environmental Research

frequency of LLJ over Hanover for 20 months in the years 2001 to 2003

total is 23.17% of all nights

circulation types:

- **BM** ridge over Central Europe HB high over British Isles
- HM high over Central Europe

•••

...

HFZ high over Scandinavia HNFA high over North Atlantic

"efficiency" of a circulation type to produce a LLJ over Hanover for 20 months in the years 2001 to 2003

Prof. Dr. Stefan Emeis - The Physics of Wind Park Optimization

Wind Energy Research A lian Sec extreme wind speed at FINO1

extreme winds

shut-down of turbines

extreme loads, immediate damages

This turbine has been damaged by gale force winds in Northern Germany in February 2011

➔ forecasts of extreme wind conditions important

Photo: dpa, Hamburger Abendblatt, February 6, 2011 http://www.abendblatt.de/region/article1778907/Niedersachsen-duchgewirbelt-Feuerwehr-im-Dauereinsatz.html

9 16.03..2011

Wind parks

what happens when turbines are close together? ...

10 16.03..2011

Prof. Dr. Stefan Emeis - The Physics of Wind Park Optimization

ahead of the next turbine in a wind park

- more turbulence

Atmospheric Environmental Research

Wind energy generation is based on momentum (energy) extraction from the air

momentum extraction decelerates the wind

- → (1) wind park efficiency depends on the equilibrium wind speed in the interior of the park
 - equilibrium between extraction and re-supply of momentum
- \rightarrow (2) wind park wakes influence other wind parks downstream
 - wake length is inversely proportional to the momentum re-supply

➔ for wind park design it is important to know:
 1) the magnitude of wind speed reduction in the park interior
 2) the length of wakes

1) the magnitude of wind speed reduction in the park interior

basic idea of the analytical model

reduction of wind speed in the park interior (calculation of the equilibrium condition for the momentum fluxes)

$$c_{teff} u_h^2 = \frac{\kappa u_* z (u_0 - u_h)}{\Delta z \phi_m}$$

extraction = re-supply from above

turbine flux-gradient-relationship and surface drag

Emeis, S., 2010: A simple analytical wind park model considering atmospheric stability. Wind Energy, 13, 459-469.

solution of the analytical model

reduction of wind speed in the park interior (calculation of the equilibrium condition for the momentum fluxes):

Emeis, S., 2010: A simple analytical wind park model considering atmospheric stability. Wind Energy, 13, 459-469.

Atmospheric Environmental Research

Atmospheric Environmental Research

reduction of wind power in the park interior measurements at Nysted wind park (Baltic sea)

Barthelmie R, Frandsen ST, Rethore PE, Jensen L., 2007: Analysis of atmospheric impacts on the development of wind turbine wakes at the Nysted wind farm. Proceedings of the European Offshore Wind Conference, Berlin 4.-6.12.2007.

2) the length of wakes

22 16.03..2011

basic idea of the analytical model

speed-up of wind speed downstream of a wind park:

$$\frac{\Delta u_{hn}}{\Delta t} = \frac{\kappa u_* z}{\Delta z^2} (u_{h0} - u_{hn})$$

speed-up = re-supply from above

Emeis, S., 2010: A simple analytical wind park model considering atmospheric stability. Wind Energy, 13, 459-469.

solution of the analytical model

speed-up of wind speed downstream of a wind park:

Emeis, S., 2010: A simple analytical wind park model considering atmospheric stability. Wind Energy, 13, 459-469.

recovery of wind speed (left) and power (right) behind a wind park, mean turbine density: 8 rotor diameters

26 16.03..2011

Prof. Dr. Stefan Emeis – The Physics of Wind Park Optimization

Prof. Dr. Stefan Emeis – The Physics of Wind Park Optimization

Conclusions 1:

vertical wind profile important

- → higher hub heights lead to more power output
- ➔ nocturnal low-level jet frequency influences overall power output
- ➔ for large turbines (hub height more than 80-90 m), logarithmic or power wind profiles are too simple, turning of the wind becomes important, too

extreme winds important

- → shut down of turbines
- turbulence important
- → higher power output
 → higher loads
 → reduced wake effects

wind speed reduction: offshore stronger than onshore

→ (partial) compensation of higher offshore wind speed
 → offshore requires a larger distance between turbines

larger harvest from wind parks during unstable stratification

- → offshore: annual cycle of energy production
- Instant of energy production

offshore wake length is several times larger than onshore

➔ offshore requires larger distances between wind parks

but, analytical model is strongly simplified

only for rough estimation, exact simulations with numerical models necessary

29 16.03..2011

air directly over the water: air at hub height: after mixing: 5°C, more than 99% relative humidity -1°C, more than 99% relative humidity 2°C, above 101% humidity → clouds

Thank you for your attention