U N I K A S S E L V E R S I T A T

PV and Wind Power - Complementary Technologies

Ann-Katrin Gerlach, Daniel Stetter and Christian Breyer 76. Jahrestagung der DPG Berlin, 28. März 2012

PV and Wind power – Future Technologies

Often mentioned statement:

"Too much PV and Wind power are a danger for the grid stability."

Why?

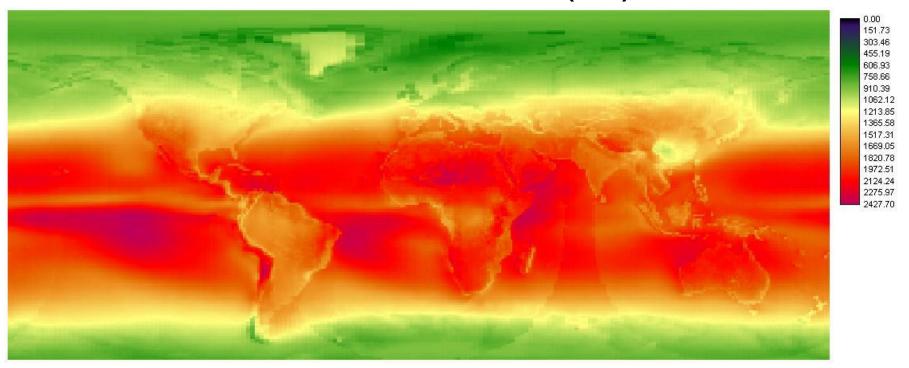
→ Fluctuating energy forms.

What consequences?

→ PV and Wind power industries – competitors.

True?

→ Depending on interaction between solar and wind resources.


Outline

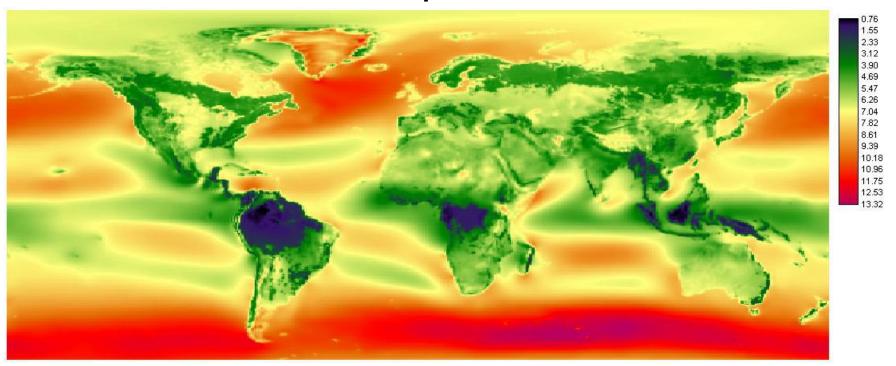
- Resource Availability
- Feed-in Power potential
- Full Load Hours of PV and Wind Power
- Overlap of PV and Wind Power
- Critical Overlap
- Conclusions

Resource Availability - PV

Global Horizontal Irradiance (GHI)

Annual long-term average in kWh / year

based on these data:


Modeling of 1 GW PV power plant

NASA data: 0.45°x0.45°, hourly, 22 years

Resource Availability - Wind

Wind Speeds

Annual long-term average in m / s

based on these data:

Modeling of 1 GW Wind power plant

NASA data: 0.45°x0.45°, hourly, 22 years

Feed-in Power Potential

Data: NASA Surface Meteorology and Solar Energy SSE Release 6.0

22 years, 1 h time-resolved and 1° spatially-resolved

PV: modeling of 1 GW power plant (optimally tilted, dependent on temperatur and irradiation, c-Si Module, central inverter)

Wind: modeling of 1 GW power plant (7.5 MW E-126 with 150 m hub height)

source: Gerlach A.-K., Breyer Ch., et al., 2011. PV and Wind Power – Complementary Technologies, 26th PVSEC, Hamburg

Feed-in of a 1 GW PV power plant worldwide, 2005-06-21 12:30 UTC

800 MW

700 MW

600 MW

500 MW

400 MW

300 MW

200 MW

100 MW

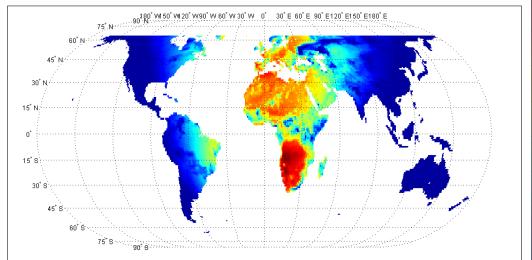
1000 MW

900 MW

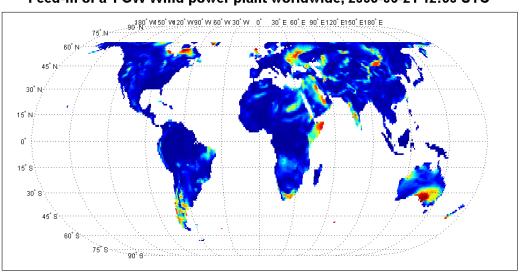
800 MW

700 MW

600 MW

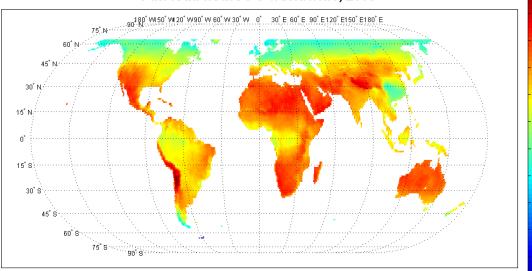

500 MW

400 MW


300 MW

200 MW

100 MW


Feed-in of a 1 GW Wind power plant worldwide, 2005-06-21 12:30 UTC

Full Load Hours of PV and Wind Power

		Technical Potential		PV	Wind
_	2000 h			[TW]	[TW]
	1800 h	Weingart	1978	> 100	-
-		WBGU	2003	infinite	90
	1400 h	Greenpeace	2008	150	35
	1200 h	Sawin and Moomaw	2008	145	55
	1200 N	Lu et al.	2009	-	80 - 150
-	1000 h	Jacobson and Delucchi	2009	580	40 - 85
_	800 h	WBGU	2011	8900	54
	600 h	IPCC SRREN	2011	120000	190
	400 h	_{400 h} Current Global Energy Demand			
	200 6	including waste of heat	[TW]	17.0	
	200 h	direct energy demand	[TW]	11.5	

4500 h

4000 h

3500 h

3000 h

2500 h

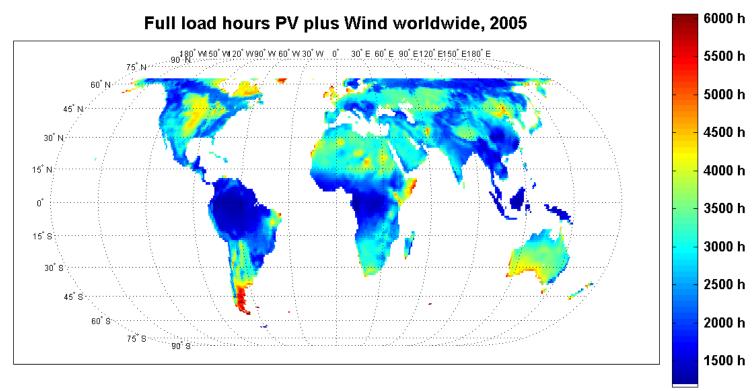
2000 h

1500 h

1000 h

500 h

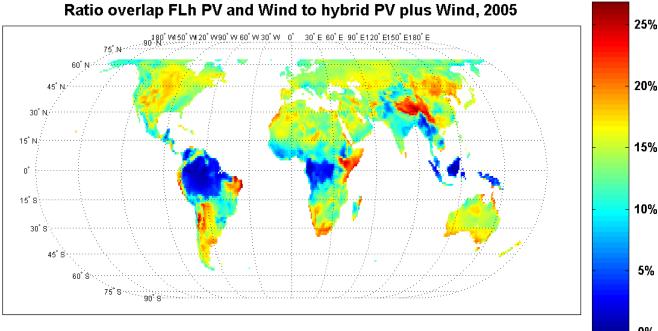
$$FLh_{PV} = \left(\sum_{i=1}^{8760} (P_{PV,i})\right) \cdot 1GW^{-1}$$


$$FLh_{Wind} = \left(\sum_{i=1}^{8760} (P_{Wind,i})\right) \cdot 1GW^{-1}$$

75' N 60' N 15' N 0' 16' S 75' S 90' S

Full load hours Wind worldwide, 2005

Full Load Hours of PV and Wind Power


$$FLh_{PV,Wind} = FLh_{PV} + FLh_{Wind}$$

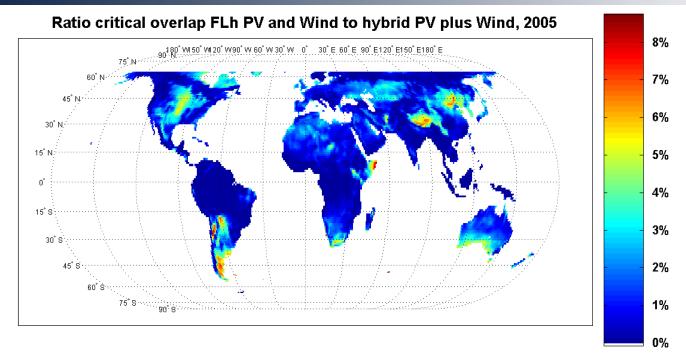
Question: How much of PV and Wind energy has been produced at the same time?

Overlap of PV and Wind Power

Overlap ranging between 5 ... 25 % of total energy

$$FLh_{OL} = \left(\sum_{i=1}^{8760} min(P_{PV,i}, P_{Wind,i})\right) \cdot 1GW^{-1}$$

Question: How much of the overlap energy is critical?

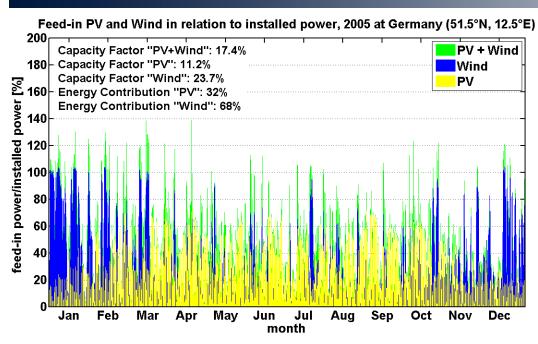


Critical Overlap of PV and Wind Power

Critical Overlap < 9 % of total energy

critical due to limitations in

- · grid capacity,
- · storage capacity,
- balancing systems,
- etc.



$$FLh_{COL} = \left(\sum_{\forall i \in \{(P_{PV,i} + P_{Wind,i}) > 1GW\}} P_{PV,i} + P_{Wind,i} - 1GW\right) \cdot 1GW^{-1}$$

 \rightarrow in most parts of the world **only 1 – 3 %** of total energy production would be critical

Example Coordinate Middle-East-Germany

significant more detailed view on the time dependend structure of power feed-in for PV and Wind → possible for all coordinates

paper for Middle-East-Germany: www.reiner-lemoine-institut.de/literatur/veroeffentlichungen

"Gerlach A.-K. and Breyer Ch., 2012. PV und Windkraft: sich hervorragend ergänzende Energietechnologien am Beispiel Mitteldeutschlands, 27. Symposium Photovoltaische Solarenergie, Bad Staffelstein"

Conclusions

- PV and Wind power do complement each other very well
- PV and Wind power industries do not need to compete with each other
 - → should cooperate
- PV and Wind power peaks are not a problem for the grid stability
- less storage capacity is needed if PV and Wind power plants are built

Thanks for your attention.

further information can be found at www.reiner-lemoine-institut.de