Comparison of different energy storage systems for renewable energies on a Caribbean island

Philipp Blechinger1,2, Markus Hlusiak1, Jan Meiss1, Kristina Bognar2, and Christian Breyer1

1) Reiner Lemoine Institut gGmbH, Ostendstraße 25, 12459 Berlin, Germany
2) Technische Universität Berlin, Institut für Energietechnik, Fasanenstraße 89, 10623 Berlin, Germany

DPG Tagung, Arbeitskreis Energie
Berlin, March the 28th 2012
Research approach

Problem
➔ Intermittent nature of renewable energies requires storage
➔ Special conditions on Caribbean islands (hot, only two seasons)

Object
➔ Energy supply system of Petite Martinique

Method
➔ Literature research
➔ HOMER Energy Simulation

Objective
➔ Finding the optimal energy supply and storage system for PM regarding renewable energies
Agenda

- Introduction – Petite Martinique
- Storage technologies
- Results
- Conclusion
Petite Martinique

Sources:
CIA (2011),
Google (2010)
Petite Martinique

![Petite Martinique](image)

<table>
<thead>
<tr>
<th>Category</th>
<th>Value / Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface area</td>
<td>2.4 km²</td>
</tr>
<tr>
<td>Highest point</td>
<td>230 meter</td>
</tr>
<tr>
<td>Population</td>
<td>Approximately 1,000</td>
</tr>
<tr>
<td>Climate</td>
<td>Subtropical</td>
</tr>
<tr>
<td>Average temperature</td>
<td>25 degree celsius</td>
</tr>
<tr>
<td>Economic sectors</td>
<td>Fishing, boat building, agriculture, tourism</td>
</tr>
</tbody>
</table>

Sources: CIA (2011), Google (2010)
Comparison of different energy storage systems for renewable energies on a Caribbean island

Philipp Blechinger
philipp.blechinger@rl-institut.de

Energy supply system

<table>
<thead>
<tr>
<th>Category</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yearly demand</td>
<td>800 MWh</td>
</tr>
<tr>
<td>Peak demand</td>
<td>152 kW</td>
</tr>
<tr>
<td>Supply system</td>
<td>2 Diesel GenSets (240 kW / 210 kW)</td>
</tr>
</tbody>
</table>

Sources:
LogSheet (2010),
NASA (2010),
Gerlach (2011)
Energy supply system

- No seasonal changes in load profile or solar radiation
- Wind and solar often complementary

Sources: LogSheet (2010), NASA (2010), Gerlach (2011)
Agenda

- Introduction – Petite Martinique
- Storage technologies
- Results
- Conclusion
Comparison of different energy storage systems for renewable energies on a Caribbean island

Philipp Blechinger
philipp.blechinger@rl-institut.de

Lead-Acid batteries vs vanadium redox flow

<table>
<thead>
<tr>
<th></th>
<th>Lead-Acid</th>
<th>Vanadium redox flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>• Relatively cheap</td>
<td>• Flexible combination of storage power and capacity</td>
</tr>
<tr>
<td></td>
<td>• Mature technology</td>
<td>• Long lifetime</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>• Difficult waste management</td>
<td>• High initial costs</td>
</tr>
<tr>
<td></td>
<td>• Vulnerable to high temperatures</td>
<td>• Maintenance effort for pumps and membranes</td>
</tr>
</tbody>
</table>

Sources:
Toledo (2010), Schiffer (2007),
Sauer (2008), Bopp (2000),
Agenda

- Introduction – Petite Martinique
- Storage technologies
- Results
- Conclusion
Energy supply system simulation: Input

Sources:
- Personal conversation
- Manufacturer / supplier (confidential)

Energy storage system:

L-A Battery:
- 1kW/6kWh: 1,500 USD
- 1,600 cycles (80% DoD)

VRF Battery:
- 1 kW: 2,000 USD plus
- 1 kWh: 1,000 USD
- 14,000 cycles (100% DoD)

Norwin 225 kW
- 550,000 USD
- 2,600 USD/kW_p
- 152 kW peak
- 2.2 MWh/day

1.20 USD/liter
Optimization of energy supply system: Results

Optimized energy supply system
- 1 Wind turbine (225 kW)
- 140 kW_p photovoltaic
- 100 kW / 600 kWh L/A Battery

<table>
<thead>
<tr>
<th>Name</th>
<th>LCOE</th>
<th>Capex</th>
<th>Diesel consumption</th>
<th>Renewable Fraction</th>
<th>CO<sub>2</sub>-Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current system</td>
<td>0.53 US-$/kWh</td>
<td>0 USD</td>
<td>335,800 liter/yr</td>
<td>0 %</td>
<td>884,000 kg</td>
</tr>
<tr>
<td>Optimized system</td>
<td>0.29 US-$/kWh</td>
<td>1,100,000 USD</td>
<td>66,700 liter /yr</td>
<td>81 %</td>
<td>176,000 kg</td>
</tr>
</tbody>
</table>

Energy storage system
- Storage costs included into levelized cost of energy
- Storing renewable energy is partly more economical than diesel power generation
- **VRF Battery** not competitive at these initial costs
Detailed analysis of storage costs

Levelized cost of storage (LCOS)

\[LCOS = \frac{\text{capex} \times \text{crf} + \text{opex}}{E_{\text{output}}} \]

capex: Capital expenditures per battery

crf: Capital recovery factor

opex: Annual operation and maintenance expenditures per battery

\[E_{\text{output}} = \text{Annual battery output (} \eta \times n \times C \times \text{DoD}) \]

C: Installed capacity

n: Annual full cycles (input energy divided by C*DoD)

DoD: Maximum depth of discharge

\[\eta \]: Roundtrip efficiency

Sources:
Lambert (2006),
Nair (2011)
Comparison of different energy storage systems for renewable energies on a Caribbean island

Philipp Blechinger
philipp.blechinger@rl-institut.de

Sensitivity analysis of storage costs

- Only significant cost reduction of VRF battery can make it competitive
- Reduction of lifecycles of L/A batteries not as crucial as change in initial costs of VRF batteries
Agenda

- Introduction – Petite Martinique
- Storage technologies
- Results
- Conclusion
Conclusion

Energy storage system
• L/A more economical for small Caribbean island than redox flow at the moment
• Flow batteries only advantageous due to environmental reasons

Energy supply system
• Renewable energies combined with storage are already competitive compared to conventional systems on islands
 • Lower levelized cost of energy
 • Less CO2-emissions
• Many other islands with similar conditions
 • Same load profile
 • Excellent renewable resources

=> Enormous market potential!
THANK YOU.

References 2

Comparison of different energy storage systems for renewable energies on a Caribbean island
Philipp Blechinger ► philipp.blechinger@rl-institut.de

Back up

Sources: Tokuda (2000)