

Windstrom und Wasserstoff – Eine Alternative

Detlef Stolten, Thomas Grube, Michael Weber

Institut für Energie- und Klimaforschung / IEK-3: Brennstoffzellen Forschungszentrum Jülich GmbH

77. Physikertagung der Deutschen Physikalischen Gesellschaft Arbeitskreis Energie (AKE) 27.03.2012 Berlin

Future Energy Solutions need to be Existing Game Changers

Drivers

- Climate change
- Energy security
- Competitiveness
- Local emissions

Goals

 Germany to reduce GHG emissions by 40% in 2020 (w/o nuclear)
55% in 2030 70% in 2040

80-95% in 2050 with reference to 1990

• Danish distributed electricity and heat is to be fossil free by 2035 (no nuclear in DK)

Grand Challenges

Renewable energy

Fossil cogeneration

Efficient central power plants

Electro mobility

<u>http://www.bmu.de/english/energy_efficiency/doc/47609.php</u> <u>http://www.stm.dk/publikationer/Et_Danmark_der_staar_sammen_11/Regeringsgrundlag_okt_2011.pdf</u> **Institute for Energy and Climate Research – Fuel Cells (IEK-3)**

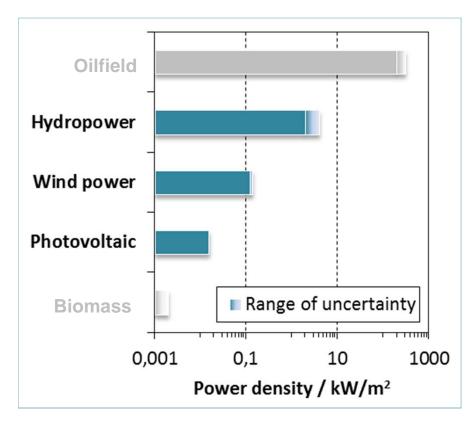
GHG Emissions Shares per Sector in Germany

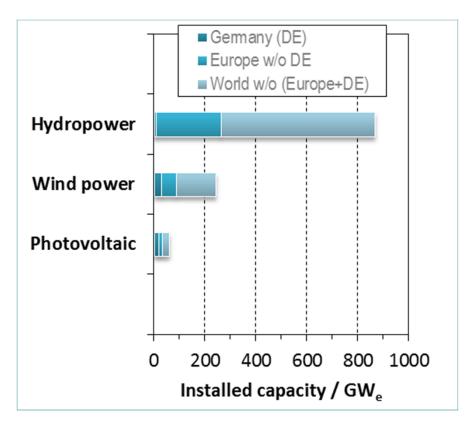
Energy sector	37%
Thereof power generation	32%
Transport (90% petroleum-ba	ased) 17%
Thereof passenger transpor	rt 11%
Thereof goods transport	6%
Residential	11%
Industry, trade and comme	rce 23%
Thereof industry	19%
Thereof trade and commerce	ce 4%
Agriculture	8%
Others	4%
Total	100%
Absolute amount as of 201	0: 920 m metric tonnes

Source:Emission Trends for Germany since 1990, Trend Tables: Greenhouse Gas (GHG) Emissions in Equivalents, without
CO2 from Land Use, Land Use Change and Forestry, Umweltbundesamt 2011
supplemented with Shell LKW Studie – Fakten, Trends und Perspektiven im Straßengüterverkehr bis 2030.Institute for EnergyEmission Trends for Germany since 1990, Trend Tables: Greenhouse Gas (GHG) Emissions in Equivalents, without
Supplemented with Shell LKW Studie – Fakten, Trends und Perspektiven im Straßengüterverkehr bis 2030.

CO₂ Equivalent Factors of Green House Gases

GHG ¹⁾ Equivalent Factors of GHG to CO ₂ [1] for Three Timelines			
	20 Years	100 Years	500 Years
CO ₂	1	1	1
CH ₄	72	25 7,0	
N ₂ O	289	298	153
HFC ²	437 – 12 000	124 – 14 800	38 – 12 200
PFC ²⁾	5 200 - 8 630	7 390 – 17 700	9 500 – 21 200
SF ₆	16 300	22 800	32 600
Average global radiative forcing [$W m^{-2}$] of green house gases [1]			
CO ₂ 1,66		CH ₄ 0,48	N ₂ O Chlorinated- 0,16 HCs: 0,34


¹⁾ Selection of GHG according to [2]


²⁾ Bandwidth according to systematics in [1]; HFC: flourinated Hydrocarbons; PFC: Perflourinated Carbons

Sources: [1] IPCC, 4th Assessment Report, Technical Summary, 2007, S. 32-33; literature usually refers to 100 years timeline [2] Nationaler Inventarbericht zum Deutschen Treibhausgasinventar 1990 – 2009, Umweltbundesamt 2011

Renewable Energy: Energy Density & Installed Capacity

Sources:

- IEA Key World Energy Statistics (2011), Report <u>www.iea.org</u>, 6.10.2011.
- World Wind Association, <u>http://www.wwindea.org/home/index.php</u>, 6.10.2011.
- European Wind Association (2011), Wind in Power 2010 Statistics. Report, Brussels, February 2011.
- European Phototvoltaic Industry Association (EPIA (2010)), Global Market Outlook 2015, Report, Brussels, 2010.

- ESTELA (2010), Solar Thermal Electricity 2025. Report, prepared by A.T. Kearney, June 2010.
- GREENPEACE (2009), Concentrating Solar Power Global Outlook 09. Report published by Greenpeace International, Amsterdam 2009.
- IHA (2010), 2010 Activity Report. International Hydropower Association, London 2010.

Energy Density of Energy Carriers for Transportation

	Physical Storage Density		Technical Storage Density	
	$[MJ \ l^{-1}]$	$[MJ kg^{-1}]$	$[MJ \ l^{-1}]$	$[MJ kg^{-1}]$
Gasoline	32	43	~ 30	~ 35
Hydrogen	5 @ 700 bar	120	4 @ 700 bar	5 § ~ 2-3 ^{§§}
Li-Ion Batteries	1 – 1.8 [‡]	0.4 - 0.7	0,5-0,9 †	0.2 - 0.4 †
Li – air Batteries #		~ 40		~ 4

- § Existing system by Opel / GM
- §§ Fuel cell system considered
- ‡ 250 500 Wh/kg
- † Cooling cells and $\Delta SOC \leq 50\%$ considered
- # In early laboratory stage

Concept for a Novel Energy System

- 1. Timeline requires focus on Existing Game Changers and Missing Links
- 2. Only renewables can deliver on the GHG reductions required
- 3. Only electromobility can deliver on the GHG requirements
- 4. Wind power, electrolysis, hydrogen and fuel cells for transportation are potential game changers
- 5. Renewables require dynamic bulk storage like geologic H₂ storage
- 6. Cost efficiency is paramount

Scenario of the Energy System for Germany in View of 55% CO₂ Reduction

Onshore Wind Power

Offshore Wind Power Same number of wind mills as of end 2011 (22500 units) Repowering from Ø 1.3 MW to 7,5 MW units => Σ 167 GW Averaged nominal operating hours: 2000 p.a. ¹

70 GW (potential according to BMU 2011², Fino => 4000 h)

24,8 GW as status of 12/2011³, volatitilty considered

Photovoltaik

Other Renewables

Excess Energy

Transportation

Residential Sector

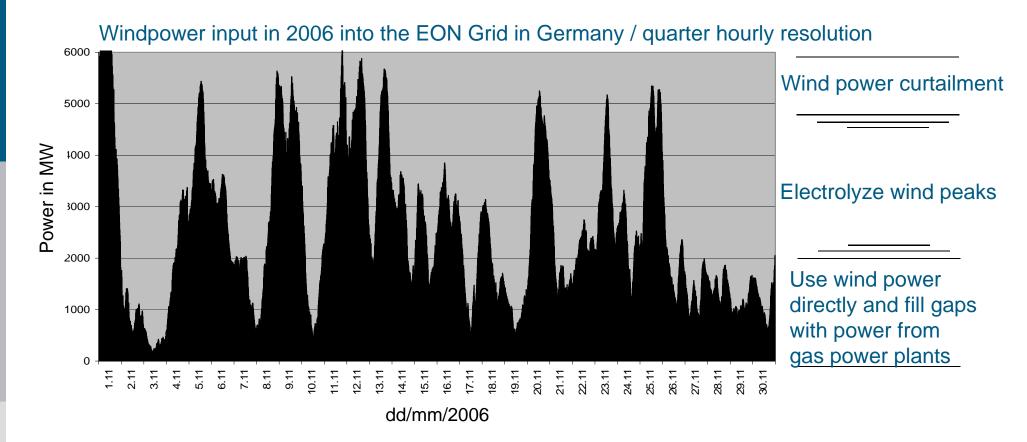
Water electrolysis $\eta_{LHV} = 70 \%^5$; > 1000 operating hours Pipeline transport + storage in salt caverns

Hydrogen for fuel cel cars: cruising range 14900 km/a⁶, consumption 1kg/100km

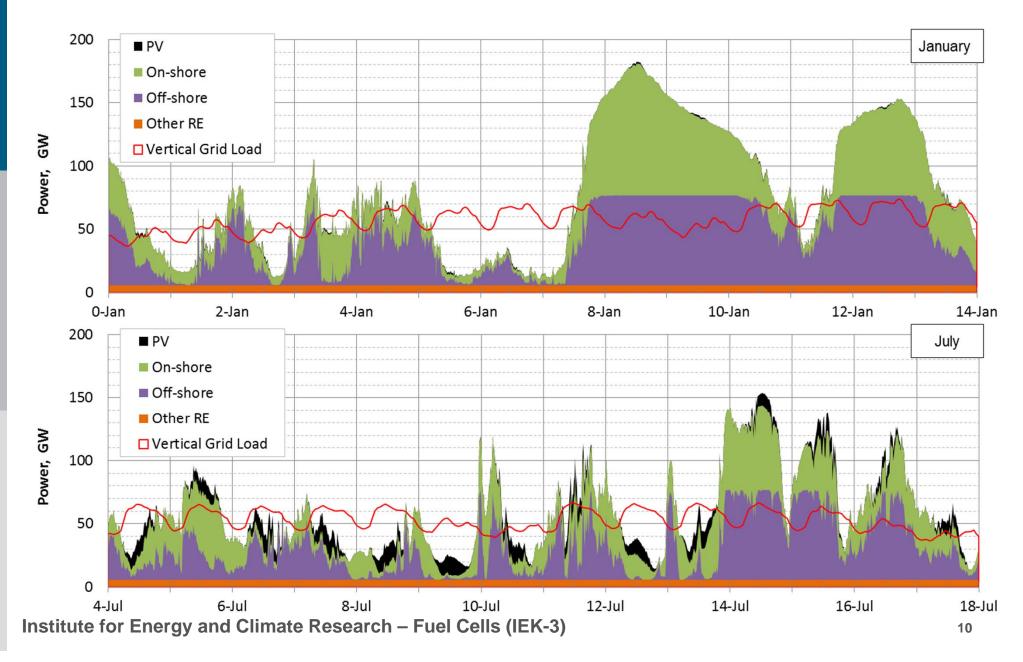
50% savings on natural gas as of 2010

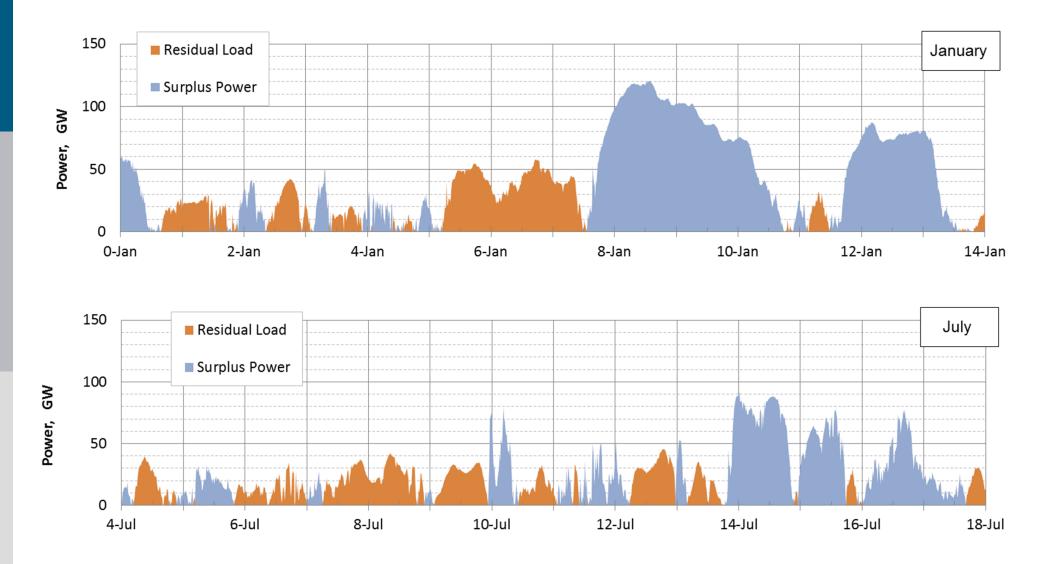
Back-up Power Open gas turbines; combined cycles > 700 operating hours/a Part load considered by 15% reduction on nominal efficiency

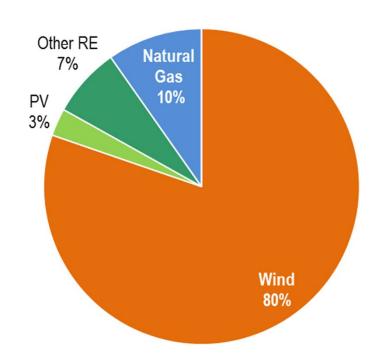
Institute for Energy and Climate Research – Fuel Cells (IEK-3)


Constant as of 2010⁴

ÜLICH


Water Electrolysis as an Enabler for Renewables

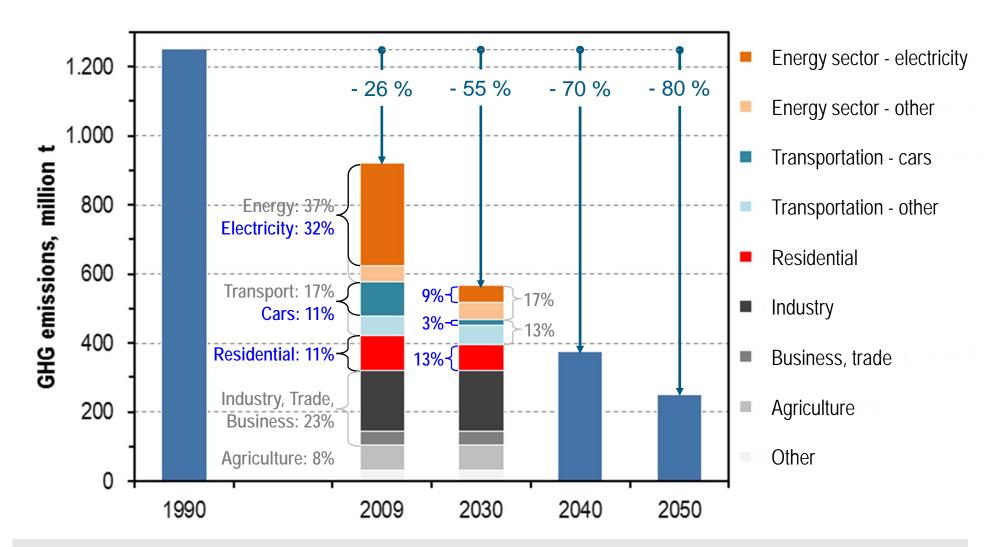

Renewable Production in Scenario & Vertical Grid Load 2010


Surplus Power & Residual Load in Scenario

Results for Scenario of 55 % of CO₂ Savings

Total amount of electricity produced; includes electricity for hydrogen production 745 TWhTransmitted electricity (vertical grid load) 488 TWhElectricity for hydrogen production $257 \text{ TWh} => 5.4 \text{ m tonnes H}_2$

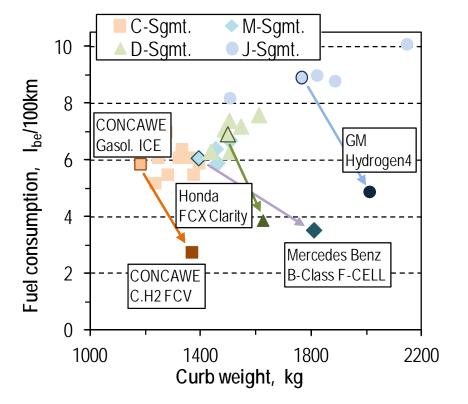
Power sector:


All nuclear, coal, lignite and oil is substituted Natural gas used for compensating fluctuations in Renewable energy

Electricity for hydrogen procduction in transportation: 28.5 m vehicles 2.1 m light duty vehicles 50,000 buses

Mix of vehicles according to the study German Hy Other than in German Hy all vehicles are FC vehicles

GHG Emissions According to Scenario



2030 target is achieved. Further reductions are feasible.

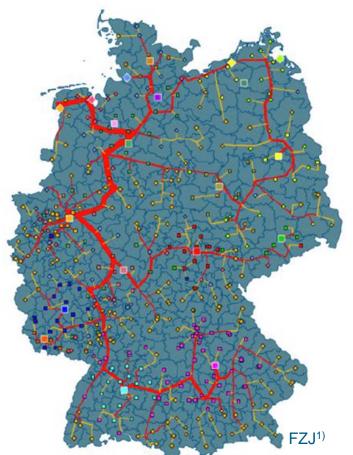
Hydrogen avoids more CO₂ in Road Transport than in Electric Re-conversion

Fuel consumption ratio ICE / FCEV	2,0	
CO ₂ emissions of substituted fuel in MJ gasoline / natural gas	1,25	
CO ₂ avoidance through H ₂ utilization transport / re-conversion	2,5	
Constraints:		
Re-conversion: combined cycle PP after transport in pipelines, efficiency ~= NG CCPP	NG	
Road transport: replacement of (1) less efficient pow	ver trains	

& (2) more carbon-rich fuel

Daimler B-class F-Cell as an Example

- Small scale production started
- Delivery of 200 vehicles beginning of 2010



http://media.daimler.com/dcmedia/ Stuttgart 28.8.2009

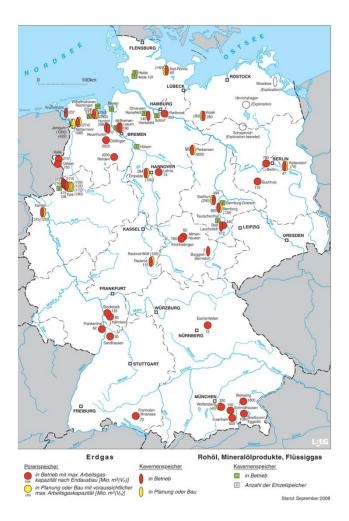
Drive train	Electric motor with fuel cell
Net power (kW/PS)	100/136
Nominal torque (Nm)	290
Top speed (km/h)	170
Fuel consumption NEDC (I Diesel equivalent/100 km)	3,3
CO2 total (g/km minmax.)	0,0
Cruising range (km) NEDC	385
Capacity/ power lithium ion battery (kWh/kW)	1,4 /35
Freeze start-up capability	Down to -25 °C

Infrastructure: Pipeline Network

1) 2) Annual hydrogen production: 5.4 m tons

Transmission grid to German districts (Landkreise)

- Length: 12,000 km
- Investment: 6-7 bn €²⁾


Distribution to 9800 refueling stations w/ 1500 kg H_2/d

- Length: 31-47,000 km
- Investment: 13-19 bn €²⁾

Baufume, Grube, Krieg, Linssen, Weber, Hake, Stolten (2012) 12. Symp. Energieinnovation, Graz, 15-17.3. (values adapted here to larger total amount of H₂) incl. compressors for compensation of pressure losses

Infrastructure: Electrolysis & Large Scale Storage

Hydrogen production:5.4 million t/aMax power over 1000 h:84 GWStorage capacity required at constant discharge:
0.8 m tons0.8 m tons9 bn scm
27 TWhLHV9 bn scm
27 TWhLHVStorage capacity for 60 day reserve
(Pumped Hydro Power in Germany:
0.04 TWh_e)0.04 TWh_e)Existing NG-storage in Germany:0.04 DWh
0.04 DWh

• 20.8 bn scm

thereof salt dome caverns:

- 8.1 bn scm (in use)
- 12.9 bn scm (in planning/construction phase)

Source: Sedlacek, R: Untertage-Gasspeicherung in Deutschland; Erdöl, Erdgas, Kohle 125, Nr.11, 2009, S.412–426.

=> Twice the existing storage capacity in salt domes needed

Cost Estimation for 55% Scenario in bn €

Water electrolyzers	42
Hydrogen pipeline grid	19 – 25
Gas caverns (compensating annual fluctuation)	5 [§] - 15 ^{&}
Fueling stations (9 800 units)	20
Additional peak power plants (GT, CC)	24

Total

110 - 126

§ compensating annual fluctuation& strategic reserve for 60 days

Why should Hydrogen go to Transportation and better not be Reconverted to Electricity?

Direct cost of hydrogen production from wind: $6 \text{ ct/kWh}_{e} / 70\% = 8,6 \text{ ct/kWh}_{H2,LHV}$ = 77 ct/l_{gasoline} (1 ℓ gasoline \triangleq 9 kWh¹) Revenues for hydrogen in case of road transportation: 70 ct/l_{gasoline} * 2 (= efficiency ratio FCV/ICE) = **140 ct/l**_{gasoline} => margin + 63 ct/l_{gasoline} tax margin 100%; ~ 1.4 € Revenues for hydrogen fed into the gas grid: NG purchase price: 4 ct/kWh = 36 ct/l gasoline = 36 ct/l_{gasoline} => margin - 41 ct/l_{gasoline} tax margin max 18 ct Revenues for hydrogen in case of methanation: NG purchase price: 4 ct/kWh = 36 ct/ $I_{b.-eq.}$ Mass balance: $4 H_2 + CO_2 \leftrightarrow 2 H_2O + CH_4$ Effciency: $\approx 75\% => 36 \text{ ct/l}_{b,-ad} * 75\% = 27 \text{ ct/l}_{gasoline}$ => margin – 50 ct/l_{gasoline}

> [1] JEC - Joint Research Center EUCAR CONCAVE (2011) <u>Well-to-</u> <u>Wheels analysis of future Automotive fuels and powertrains, WtT-</u> <u>Appendix 1, Version 3c.</u>

Conclusions

- Wind power bears the potential to transform the German energy sector
- The proposed reduction potential of 55% is achievable; the timeline until 2030 is to be clarified
- Hydrogen as a means of energy storage is indispensable since
 - Methanation is economically not viable
 - Other means of storage like pumped hydro or batteries fail capacity-wise
- There is no such thing as surplus wind power; i.e. it is not for granted and should be used most economically in transportation
- Capital cost is manageable
- The CO₂ reduction measures draw on:
 - Power production: -20%
 - Transportation: -6,5%
 - Residential heating: -2,2%
- Further reduction potential through:
 - Biofuels as surrogates for liquid fuels
 - Energy conservation measures
 - Incorporation of contributions of other concepts like smart grids, heat pumps etc.

Thank You for Your Attention!

Transition to Renewables June 3-5, 2012 Frankfurt, Dechema Haus

Call for abstracts to come September 1, 2012