

Fakultät Mathematik und Naturwissenschaften – Institut für Angewandte Photophysik http://www.iapp.de

Efficient Organic Solar Cells based on Small Molecules

C. Körner, R. Fitzner, C. Elschner, F. Holzmüller, P. Bäuerle, K. Leo and M. Riede

> DPG AKE Meeting 2013 AKE 7.2

> > 05.03.2013

flat heterojunction (FHJ)

Pro's

- charge transport
- easy to process

Con's

 limited to thin layers (little absorption, low currents)

bulk heterojunction (BHJ)

Pro's

- high currents (small D/A distances)
- thicker layers possible

Con's

- charge transport disturbed
- higher recombination
- multi-parameter optimization

Reasons/Ways for Improvement towards Higher Efficiency

Processing: Substrate Heating

Molecules: Variability!

Similar properties – different performance

The Starting Point

Thin Film Morphology via GIXRD

Fitzner, Elschner et al., J. Am. Chem. Soc. 2012, 134, 11064

Roadmap for High Efficiency

optimize mixing ratio DCV5T/C60: 2:1

optimal substrate temperature: T_{sub}=80°C

• optimize thickness of the active blend layer:

optimize thickness of window layer: 35-40nm

35-40nm

7.2% reached!

Slide 11

certified efficiency at Fraunhofer ISE: $\eta = 7.2\%$

Summary

molecules and thin film morphology are crucial for high efficiency

- record efficiency of 7.2% achieved for small molecule organic solar cells
- Further optimization by
 - increased absorption
 - red-shifted absorption (optical gap at 1.4eV)
 - tandem structures

. . .

Acknowlegdments

ulm university universität **UUIM**

Deutsche Forschungsgemeinschaft **DFG**

Thank You For Your Attention

Appendix

Introduction

Organic Solar Cell properties

- flexible
- cheap
- colorful
- transparent
- superior temperature, angle and low-light performance

possible applications

- building integration
- facades
- mobile applications

• ...

Slide 16

Sources: NREL (www.nrel.gov/ncpv/images/efficiency_chart.jpg); heliatek press releases

C. Tang, APL 48, 183 (1986)

Solar Cell Characterization

jV-characteristics

Substrate Heating

Review

David Wynands:

Christian Körner/Franz Selzer:

Variation of Substrate Temperature

 critical temperature higher for compound 15

- improvement up to $T_{sub} = 80^{\circ}C$
- above a critical temperature, j_{sc} and V_{oc} are decreased

Morphological Changes upon Substrate Heating

Christian Körner

DPG AKE Dresden 2013, AKE 7.2

Slide 24

Substrate Heating Detailed Investigations

DPG AKE Dresden 2013, AKE 7.2

Slide 25

very strong exciton binding energy

Substrate Heating Review

Substrate Heating Solar Cell Characteristics

TECHNISCHE

IIVERSITÄT

Substrate Heating Blend Layer Topography (AFM)

Substrate Heating Photoluminescence Quenching

ĭapp

Substrate Heating Photoluminescence Quenching

app

- increased crystallinity of DCV4T and C_{60} phase : 30°C (blue) \rightarrow 90°C (orange)
- Change in p-stacking direction (out-of-plane → in-plane reflections)

 = explanation for decrease in absorption (unfavorable molecule orientation to incoming light)

ECHNISCHE