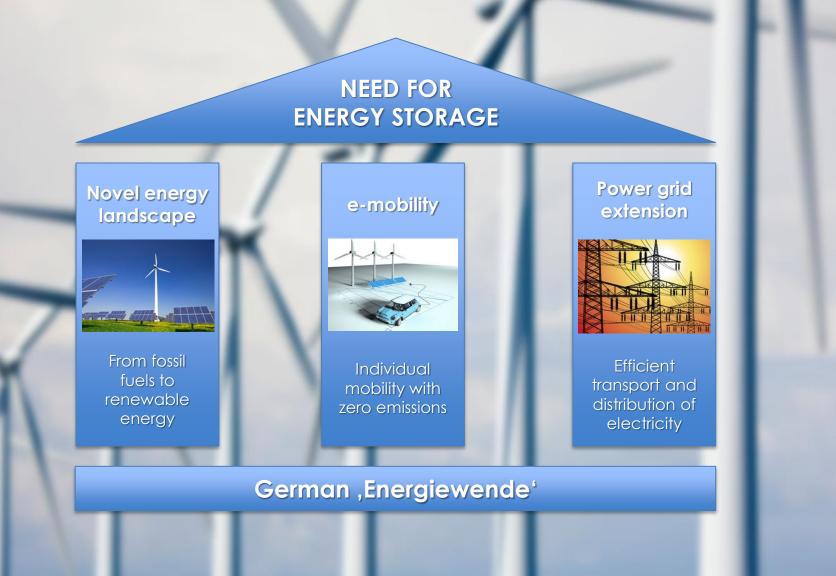


ENERGY SYSTEMS: THE IMPORTANCE OF ENERGY STORAGE

Michael Metzger and <u>Ulrich Stimming</u> Technische Universität München

Department of Physics E19, Garching Institute for Advanced Study, Garching TUM CREATE Center for Electromobility, Singapore



Physik-Department

Pictures: bmu.de/themen/klima-energie/energiewende

Outline

- The Challenge: Different Forms of Energy and How to Store Them
 - Thermal Energy
 - Electrical Energy
- The Devices: Selected Energy Storage Systems
 - Batteries
 - Redox Flow Batteries
 - Supercaps
 - Electrolyzers & Fuel Cells
- The Big Picture: Do We Need a New Energy Architecture?

THE CHALLENGE

DIFFERENT FORMS OF ENERGY AND HOW TO STORE THEM



History & Definitions

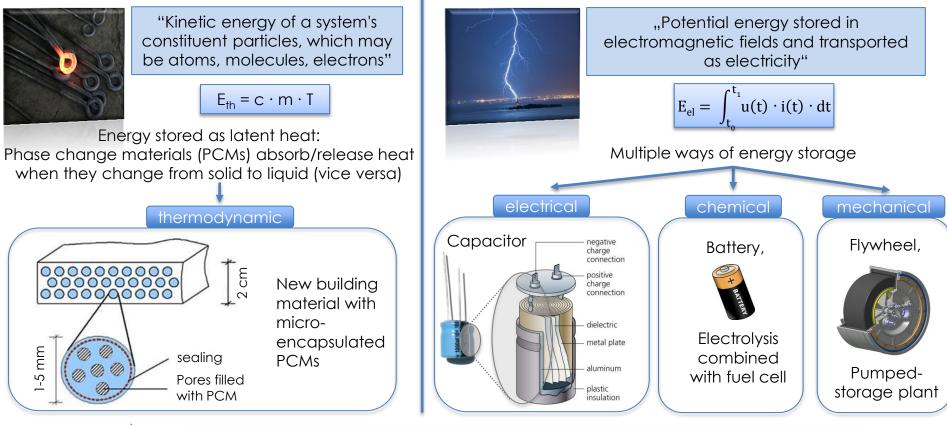
Aristotel: energeia = activity

Leibniz & Newton: First concept of kinetic energy and thermal energy

Young, Coriolis & Rankine: Kinetic and potential energy in the modern sense

Mayer: Conservation of energy

Joule & Kelvin: Laws of thermodynamics

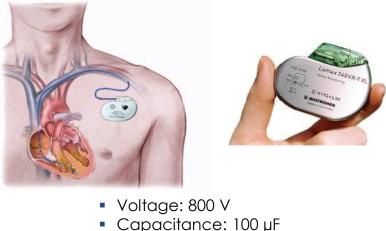

Key parameters for energy storage

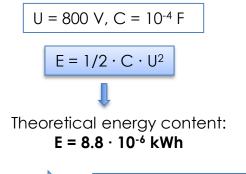
Energy densityAmount of energy stored in a system of given mass or region of spaceGravimetric: J · kg ⁻¹ Volumetric: J · m ⁻³	Storage time	Typical time of energy storage characteristic for specific device design
Power density Power of energy converters or storage devices related to their mass or volume • Gravimetric: J · s ⁻¹ · kg ⁻¹ • Volumetric: J · s ⁻¹ · m ⁻³	Self-discharge	Internal reactions reduce the stored charge in a device without any load connected in the external circuit

Storage Capability

Thermal Energy

2nd law of thermodynamics: Heat cannot be converted into work without losses


Electrical Energy


Source: J. Manara, ZAE Bayern, 2007

Scale of Application

Capacitor: Implantable defibrillator

Rohrleitungen

Walchensee (800,8m)

Pumped-storage power plant: ,Walchensee'

Ramskopf 955m

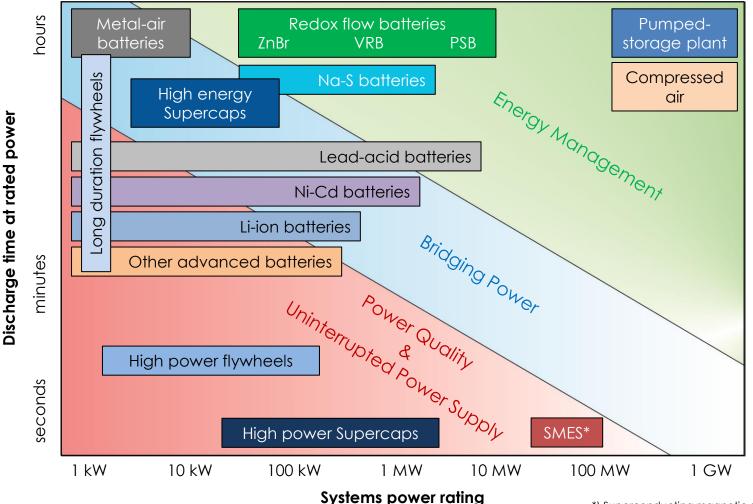
- Height difference: 200 m
- Max. lowering of water table: 6 m Equivalent in water volume: 10¹¹ L
- $m = 10^{11} \text{ kg}, g = 9,81 \text{ m/s}^2, h = 200 \text{ m}$ $E = m \cdot g \cdot h$

Theoretical energy content: $E = 60 \cdot 10^{6} \, kWh$

Wasserschloss (800m)

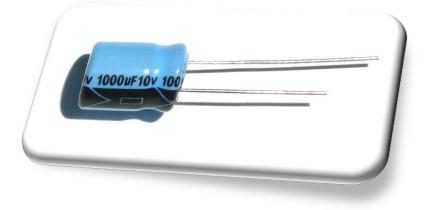
Kraftwerk

Kochelsee (600m)


Energy and power density determine field of application for different technologies

Sources: H. Haase, Institut für Grundlagen der Elektrotechnik und Messtechnik, Leibniz Universität Hannover, 2007 | E.ON Wasserkraft, 2010

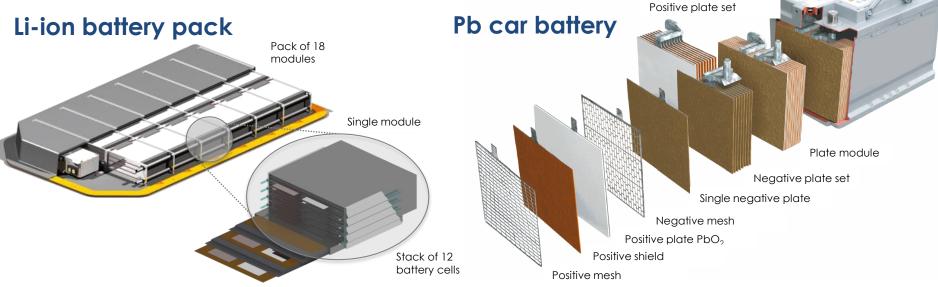
3/5/2013


Choice of Technology

*) Superconducting magnetic energy storage

SELECTED ENERGY STORAGE SYSTEMS

THE DEVICES



Technische Universität München

Batteries – state-of-the-art

Battery type	Pb	Ni-Cd	Ni-MeH	Na-S/Na-NiCl ₂	Li-ion
Energy density vol. [Wh/L]	90	150	200	345/190	300-400
Energy density grav. [Wh/kg]	35	50	70	170/120	200-300
Power density vol. [W/L]	910	2000	3000	270	4200-5500
Power density grav. [W/kg]	430	700	1200	180	3000-3800
Self-discharge	+	+	+	-	++
Fast charging		++	+	-	+

Sources: Christian Linse, Christian Huber, Robert Kuhn, TUM CREATE, 2013, unpublished | Mario Wachtler, Margret Wohlfahrt-Mehrens, ZSW Ulm, 2011

3/5/2013

Li-ion Battery – Principle

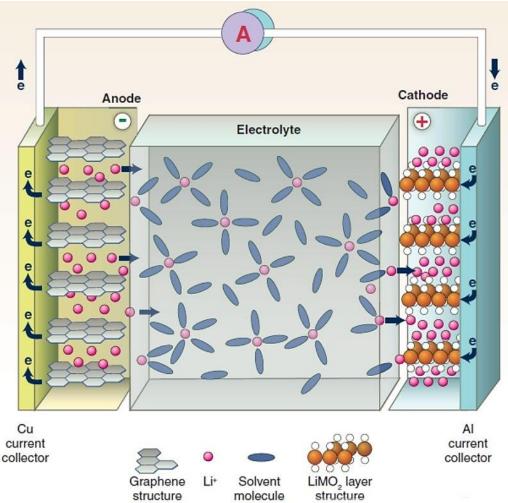
Reaction mechanism

 $Li^{+} + e^{-} + 2 Li_{0.5} CoO_2 \leftrightarrow 2 LiCoO_2$ (cathode)

 $\text{LiC}_{6} \leftrightarrow \text{Li}^{+} + e^{-} + 6 \text{ C}$ (anode)

 $LiC_6 + 2Li_{0.5}CoO_2 \leftrightarrow 2LiCoO_2 + 6C$; $\Delta U_0 \approx 4.1 V$

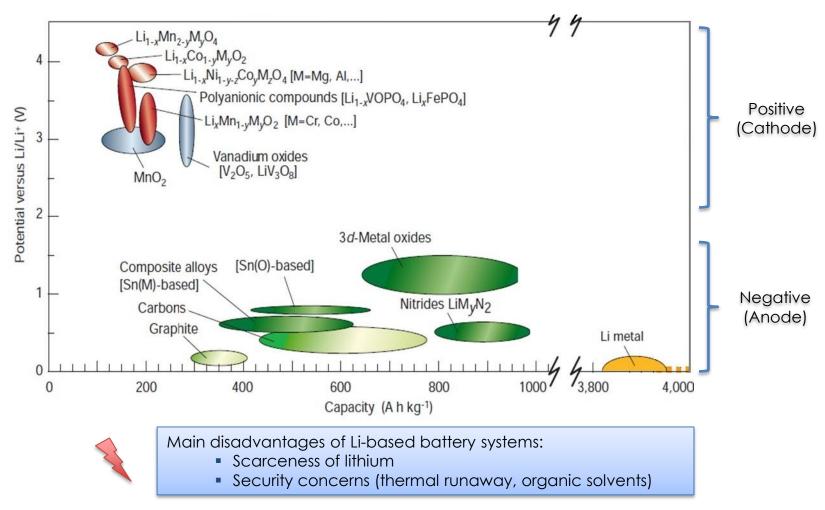
Electrodes


Intercalation / deintercalation of Li⁺ ions into host structures

Limit: Energy density

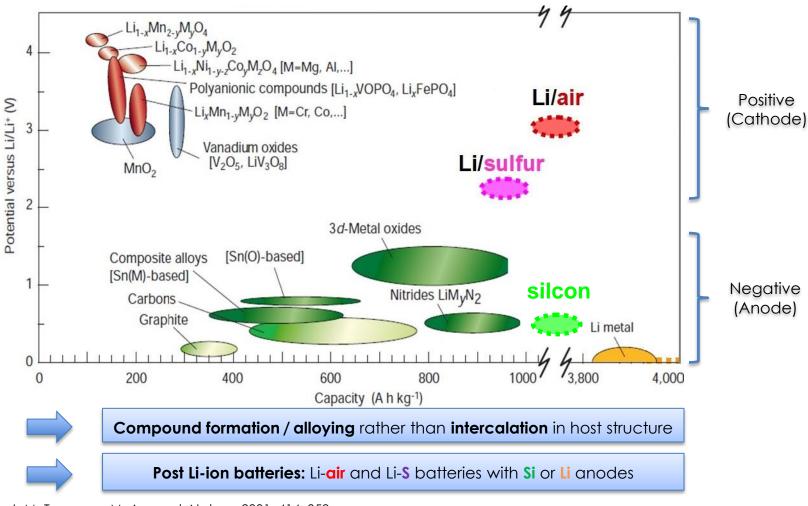
Example: LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂ / Graphite

Electrodes: 70 % of cell weight Rest (current collectors, electrolyte): 30 %


- Electrodes : 430 Wh/kg
- Complete cells: 300 Wh/kg
- Total battery pack: 200 Wh/kg

Sources: B. Dunn, et al., Science, 2011, 334, 928 | F. T. Wagner, B. Lakshmanan, M. F. Mathias, J. Phys. Chem. Lett., 2010, 1, 2204

3/5/2013


Active Materials for Batteries

Source: J.-M. Tarascon, M. Armand, Nature, 2001, 414, 359

Technische Universität München

Active Materials for Batteries

Source: J.-M. Tarascon, M. Armand, Nature, 2001, 414, 359

Technische Universität München

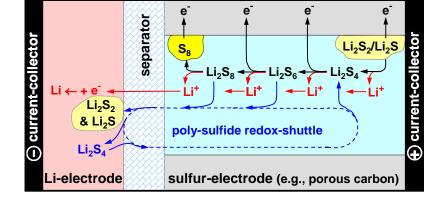
Future Concepts – Li-S Batteries

Concept

Technische Universität München

 $S + 2Li^+ + 2e^- \leftrightarrow (Li_2S)_{solid}$ (cathode) 2 Li $\leftrightarrow 2Li^+ + 2e^-$ (anode)

2 Li + S ↔ (Li₂S)_{solid} ; $\Delta U_0 \approx 2.0 \text{ V}$

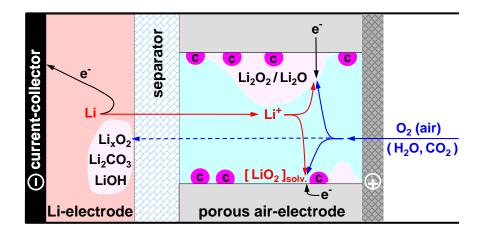

Challenges and R&D needs

- Polysulfide diffusion to anode is Li⁺-conducting diffusion barrier
- Stable anode configuration is Improved Li-metal anode design or alternative

Advantages

- High specific capacity: 630 Ah/kg_{electrode}
- High energy density: 950 Wh/kg_{electrode}
- Low cost of sulfur
- Minimal degradation during charge cycling

Source: Y.-C. Lu, H. A. Gasteiger, M. C. Parent, V. Chiloyan, Y. Shao-Horn, Electrochem. & Solid-State Lett., 2010, 13, A69

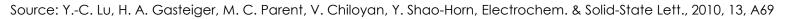


Future Concepts – Li-air Batteries

Concept

Technische Universität München

$O_2 + 2 Li^+ + 2 e^- \leftrightarrow (Li_2O_2)_{solid}$ 2 Li ↔ 2 Li^+ + 2 e^-	(cathode) (anode)
2 Li + O ₂ ↔ $(Li_2O_2)_{solid}$;	∆U ₀ ≈2.96 V
$O_2 + 4 Li^+ + 4 e^- \leftrightarrow (Li_2O)_{solid}$	(cathode)
4 Li ↔ 4 Li⁺ + 4 e⁻	(anode)



Challenges and R&D needs

- Battery has to be protected from environment (O₂ must be present at cathode/humidity can cause degradation)
- Blockage of porous carbon cathode with discharge products ("clogging")
- Presence of significant charge overpotential indicating secondary reactions besides recharging

Advantages

- Specific capacity even higher than for Li-S: 800 Ah/kg_{electrode}
- Very high energy density: 1700 Wh/kg_{electrode}
- Oxygen from air instead of storing an oxidizer internally

Michael Metzger and Ulrich Stimming – DPG Dresden 2013

Gain vs. state-of-the-art batteries:

4-fold

Discharge (charge vice versa)

F conducting

AF_n anode

(-)

e

electrolyte

CF_v

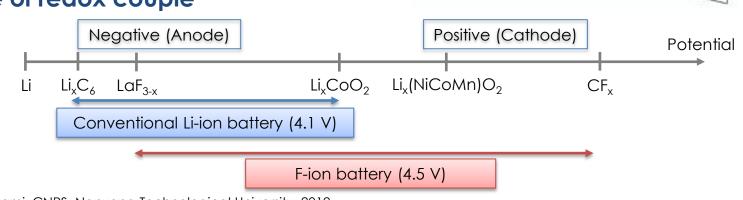
cathode

Novel Concept – F-ion Batteries

Concept

Reminder: Li-ion reaction

```
\text{LiC}_{6} + 2\text{Li}_{0.5}\text{CoO}_{2} \leftrightarrow 2\text{LiCoO}_{2} + 6\text{C} \text{ ; } \Delta\text{U}_{0} \approx 4.1 \text{ V}
```


F-ion reaction

 $LaF_3 + 3CF_y \leftrightarrow LaF_{3(1-x)} + 3CF_{x+y}; \Delta U_0 \approx 4.5 V$

Advantages

- High theoretical energy density: 1560 Wh/kg
- No need for scarce elemental lithium
- Safer than Li-ion batteries (no oxygen present)

Choice of redox couple

Source: R. Yazami, CNRS, Nanyang Technological University, 2012

Battery Applications

Battery stacks for e-mobility

TIM CREATE

High	power	battery	pack
Num	borofo		0

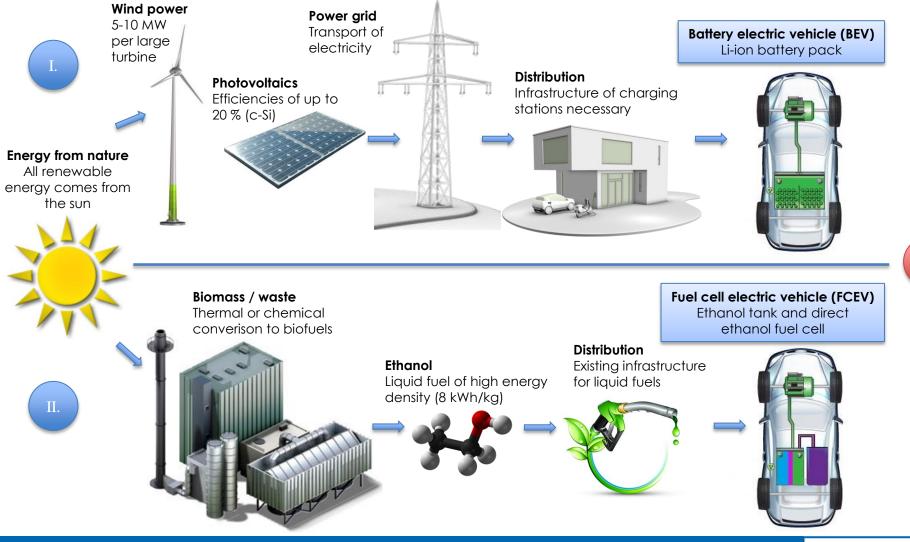
High power battery pac	K Contraction	
Number of cells:	216	
Number of modules:	18	
Weight:	max. 550 kg	
Energy content:	48 kWh	
Battery voltage:	300 450 ∨	
Battery current:	max. 360 A	

Overall design optimization

- Integration of cooling plates into battery structure
- Maximize mechanical safety
- Specific energy module / pack level

Sources: Christian Linse, Christian Huber, Robert Kuhn, TUM CREATE, 2013, unpublished | J. Garche, unpublished

Batteries for aviation

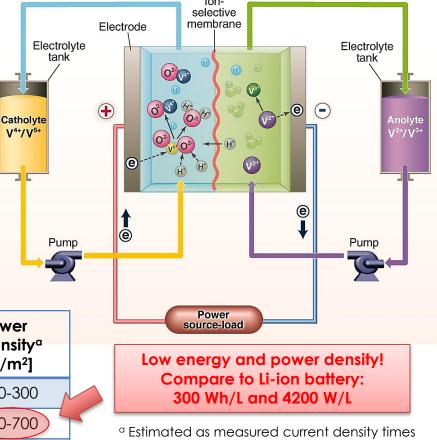


- Ni-Cd batteries used as start-up and emergency power supply
- New Boeing 787 Dreamliner uses 2.2 kWh GS Yuasa LiCoO₂ batteries

Fueling the e-car

Redox Flow Battery – Principle

Reaction mechanism

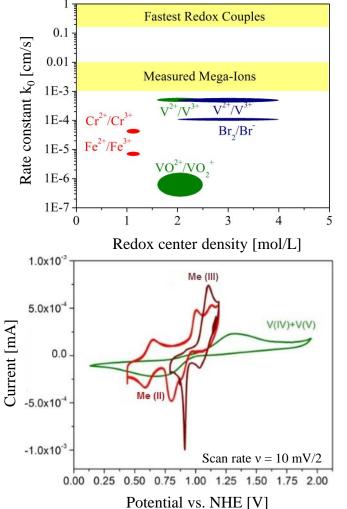

$\underline{V^{5+} \rightarrow V^{4+}}$ $VO_2^+ + 2H^+$	+ $e^- \rightarrow VO^{2+} + H_2O$
U ₀ ≈ +1.00 V vs. NHE	
$\underline{V^{2+} \rightarrow V^{3+}}$ V^{2+}	\rightarrow V ³⁺ + e ⁻
U₀ ≈ -0.26 V vs. NHE	

Discharge operation (charge operation vice versa)

Advantages of Redox flow batteries

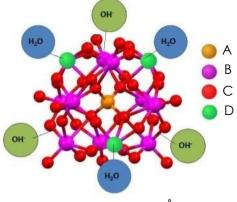
- Energy and power of battery scale independently
- Instantaneously refuelable
- High cycle-lifetime
- Non-hazardous materials

Redox couple	E _{cell} [V]	Overall efficiency [%]	Energy density [Wh/L]	P <mark>ower</mark> density ^a [W/m²]	
Iron-Chromium	1.2	95	13-15	200-300	
All-Vanadium	1.6	83	25-35	600-700	
Vanadium-Bromide	1.4	74	35-70	220-320	
Mega-ions	1.5	96 ^b	250 ^c	2000	


- ^a Estimated as measured current density times cell voltage
- ^b Coloumb efficiency of half-cell
- ^c Estimated value based on solubility of 1 mol/L and 6 electrons per redox molecule

Sources: Jochen Friedl, Ulrich Stimming, TUM CREATE, 2013, unpublished | M. Skyllas-Kazacos, et. al., J. Electrochem. Soc., 2011, 158 (8), R55-R79

3/5/2013


Novel approach: Mega-ions for RFBs

Concept

Mega-ions containing multiple transition metal redox centers

- Metal (Me) ions as redox centers
- Two e⁻ oxidation possible
- Use molecules containing 3 to 19 Me atoms, so 6 to 38 e⁻ per molecule

Diameter ≈ 12 Å

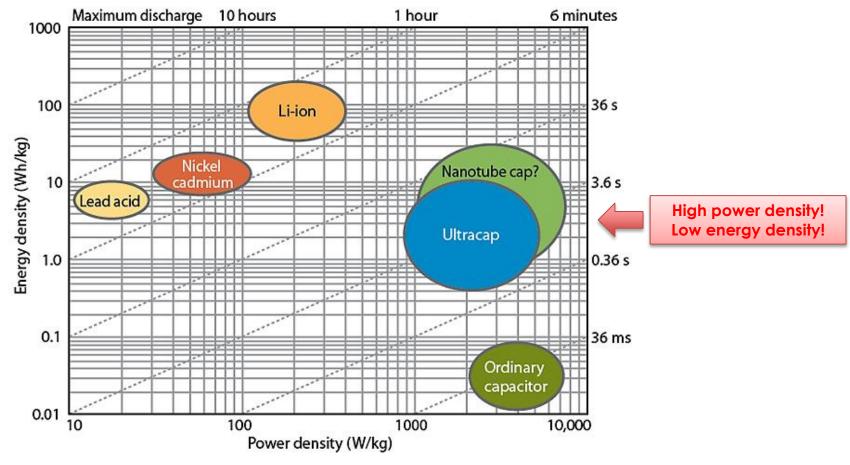
Cyclic voltammetry

CVs show that metal redox potential lies approx. at same value as for Vanadium

Metal redox centers suitable for use in RFBs

Temperature-dependent current

Increase in power density by enhancing reaction speed


Fast electron transfer kinetics: $k_0 \approx 10^{-2}$ cm/s

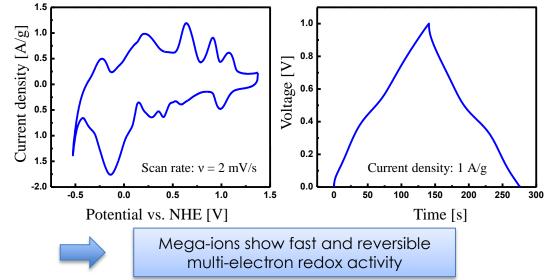
Source: Jochen Friedl, Ulrich Stimming, TUM CREATE, 2013, unpublished

Supercaps – state-of-the-art

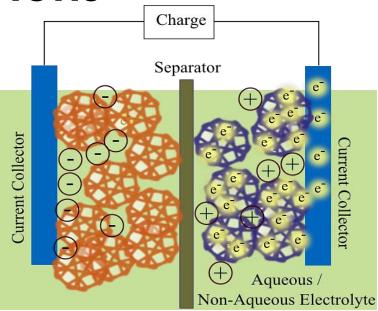
Ragone chart

Source: electronicdesign.com

Supercaps with Mega-ions


Concept

- Mega-ions incorporated in electrode structure
- Material: Transition metal provides multiple redox centers
- High number of electrons per unit volume

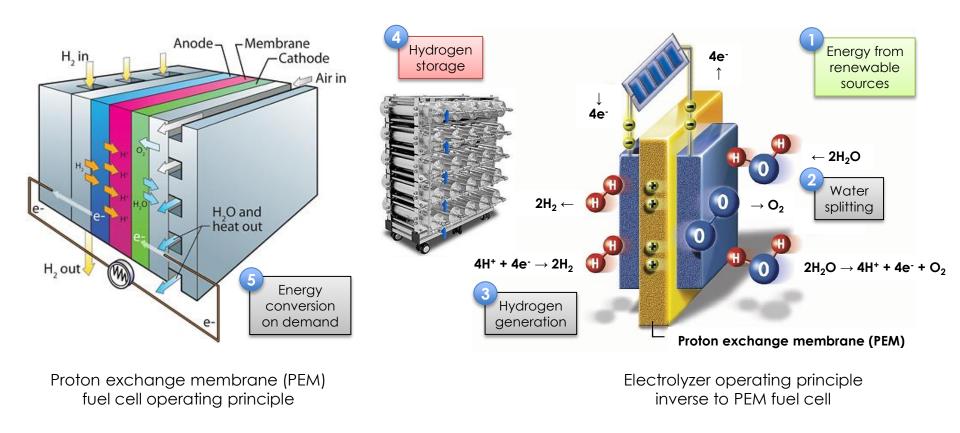

Energy stored in:

Electrochemical double-layer Oxidation state of mega-ions

CV & galvanostatic charge-discharge

Source: Jochen Friedl, Han-Yi Chen, Ulrich Stimming, TUM CREATE, 2013, unpublished

Performance


(Electrolyte: 1 M H₂SO₄)

Specific	Energy	Power
capacitance	density	density
[F/g]	[Wh/kg]	[kW/kg]
500	15*	15*

*Estimated value based on solubility of 1 mol/L and 6 electrons per redox molecule

Electrolysis & Fuel Cells

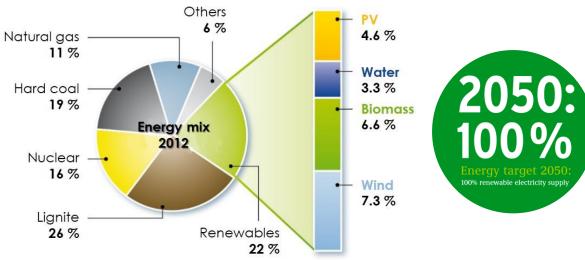
PEM fuel cell and electrolyzer as complementary techniques for energy conversion on demand

Sources: Los Alamos National Laboratory, U.S. Department of Energy, 2011 | puregasproducts.com | marqumtech.com

3/5/2013

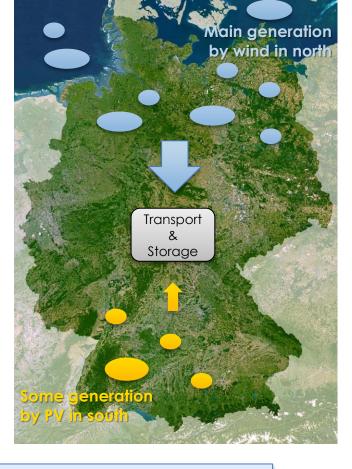
THE BIG PICTURE

DO WE NEED A NEW ENERGY ARCHITECTURE?



Top-Down Approach

Conventional approach: Centralization


"Few large-scale producers vs. many consumers"

- Rapid development of renewable energy (100 % in 2050)
- Construction of large-scale wind parks (N) and PV sites (S)
- Grid extension for transport of electricity from N to S
- Storage capacity of grid to be increased

Effective energy management only by a limited number of **large-scale storage technologies** (pumped-storage plants, compressed air storage)

Source: bmu.de/themen/klima-energie

Wind power

electrolysis

partially used for


Energy storag

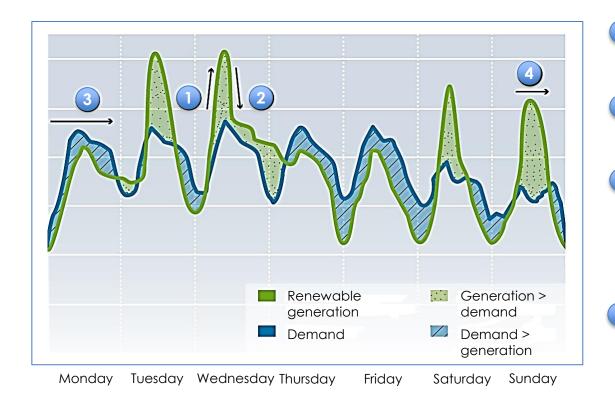
by redox flow

Smart demand side management

batteries

Bottom-Up Approach

Alternate approach: Decentralization


"Many small producers vs. many consumers"

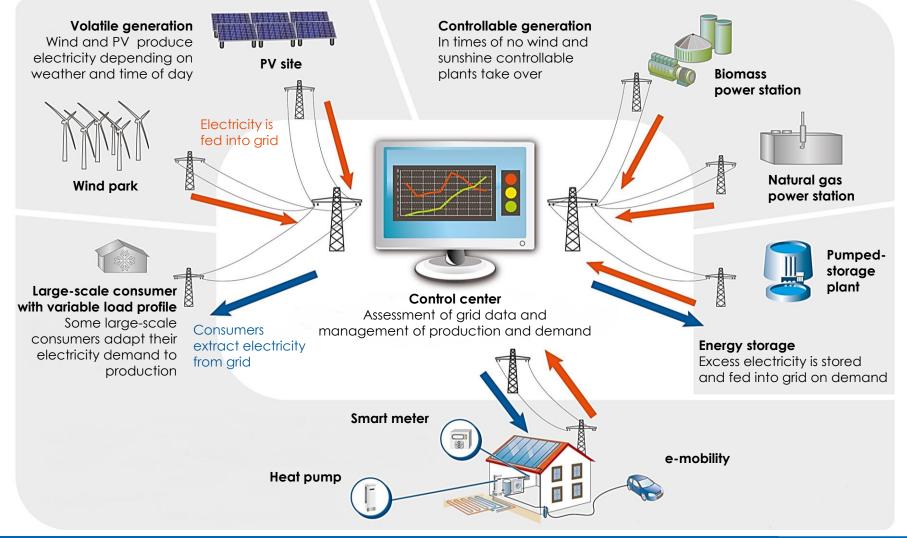
- Self-sustaining communities / production sites / households / ...
- Generation of electricity where it is needed
- Minimized need for energy storage and minimal supplement from the grid

Combination of multiple **small-scale technologies** to design generation, storage and consumption in a **smart** way!

Source: bmu.de/themen/klima-energie

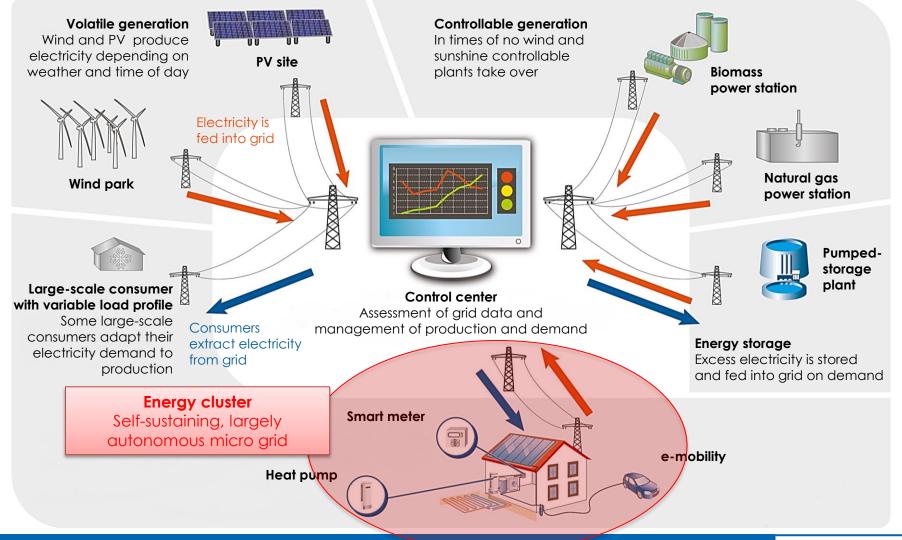
Demand Side Management (DSM)

- Generation from renewable sources is volatile, typical peak shape at noon from PV
- Rapid decline in renewable generation due to weather conditions
- Demand > generation: Controllable consumers (heat pumps, BEVs, cold storage houses) reduce load and electricity from energy storage devices is fed into grid
- Generation > demand: Energy storage devices and controllable consumers take up excess electricity


DSM and energy storage compensate volatile renewable generation

Source: Agentur für Erneuerbare Energien, 2012

Technische Universität München


The Smart Grid

Michael Metzger and Ulrich Stimming – DPG Dresden 2013

The Smart Grid

Energy Clusters

Single-family home

Block

District

Scalable by choice of technology for energy conversion and storage

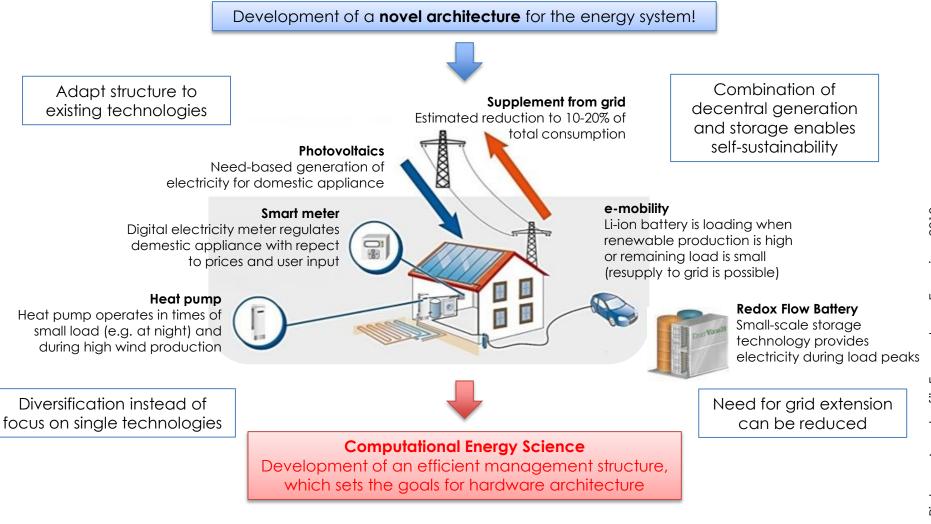
Quasi-autonomous energy clusters are defined by:

- Local conditions (irradiance in kWh/m² a, adequacy for wind power, access to long-distance heating, need for air conditioning)
- Size of respective area in m²
- Utilization (private housing, shops, service industry, manufacturing industry)
- Total electricity consumption
- Flexibility (demand side management)

2010

c) EA EnergieArchitektur,

Sources: a)Strom.info | b)B. Laquai, hbw-solar, 2003


Example: City Block

3/5/2013

Summary

Michael Metzger and Ulrich Stimming – DPG Dresden 2013

32

Thank you for your attention!

Michael Metzger and <u>Ulrich Stimming</u> Technische Universität München

Department of Physics E19, Garching Institute for Advanced Study, Garching TUM CREATE Center for Electromobility, Singapore