

DPG Tagung 17-21.März 2014, Berlin

International role of nuclear fission energy generation - status and perspectives

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Content

- Present status of nuclear electricity generation observations worldwide and in Europe
- Boundary conditions for NPP deployment-Large reactors (LR)/ vs. small medium sized reactors (SMR)
 - Economic considerations
- Safety concept of a NPP
 - General safety approach
 - Design safety
 - Severe accident safety & measures
 - LR under development
 - SMR technologies
- Generation –IV -Transmutation
- Some concluding remarks

Present status – Some facts

- NPP worldwide currently operating (3/2014, www.iaea.org/pirs/):
 - 435 nuclear power plants commercially operated
 - 372 GWe net capacity
 - 72 reactors under construction
 - 240 research reactors in (56 countries), 180 nuclear powered civil ships
- Net electricity production 2370 TWh (2013)
- ⇒ \approx 11% of global electricity production (almost constant since 2006)

Present status –Some facts

- Age distribution
 - Mean reactor age ~30y
 - Most reactors belong to Gen-II systems

- Nearly all current reactors operating are of LR-type
 - Installed mean power >1GWe
 - NPP operated as grid base load backbone

Present status- Germany

After march 11th 2011 Fukushima

- 9 NPP operating (12,068GW_{el})
- 8 shut-down
- 16 in decomissioning phase

NPP electricity facts

- 97TWh_{el} produced
- ➡ load factor (LF=) 92%
- Share in energy mix ~16%
- Difficult boundary conditions
 - Priority access of renewable energy sources (RES)
 - nuclear fuel tax
 - Regulatory contraints ("stress test",licensing, ….)

- Successful "Energiewende" demands
 - transformation of grid AND
 - provision of mature, reliable storage technologies

Boundary conditions for NPP deployment

- Grid /electricity independence > autarchy (resources, availability,...)
- Strategy of economic and
- social development
- technological basis
- - industrialization goals
 - acceptance, perception
 - maturity, safety performance, infrastructures
- Additional considerations: bridging technology **+** long term option

General facts

Boundary conditions for NPP deployment Positive and negative effects in NPP erection **NEGATIVE** POSITIVE Sensitivity to the Cost of Money construction delays/regulatory Agence pour l'énergie nucléaire Nuclear Energy Agency OECD burdens **Electricity Cost Sensitivity** capital intensive investment = exposure to market risk to Fuel Price Volatility + 75 % < + 5 % sun **GAS-FIRED PLANT** NUCLEAR PLANT ThD / 7 May 2007 NUCLEAR POWER: GLOBAL STATUS AND PROSPECTS 16

Consequences

© Booz & Company, 2009

- Long-term investment strategy
- stable energy polictics environment
- societal economic stability AND acceptance

Especially for private operators in liberalized markets based on competition

Boundary conditions for NPP deployment

Large reactors or Small Modular Reactors (SMR) ?

Arguments for SMR

- flexible power generation wider user/application range
- replacement of fossil fired units
- enhanced safety margin by inherent and/or passive safety features;
- better affordability freedom in upgrading
- Cogeneration & non electric applications (desalination-process heat),
- Hybrid energy systems composed of nuclear with RES.

But deployment & technology of SMR is not

simply a scale reduction

sum of the modules

=

Major aspects for nuclear reactor deployment

Currently deployment of Gen III –reactors

Are they essentially new compared to running Gen-II types? -No

Evolutions of the operating Gen 2 plants

Why ?

- Low industrial risk:
 - Include feedback of experience of the global fleet
 - Designed on well proven physics principles
 - No technological leap necessary
- Performance vs. sustainability = Gen 2

Major aspects for nuclear reactor deployment

Hardened design objectives for

nuclear safety (Severe accident integrated in design; limited radiological consequences, Core damage frequency <10⁻⁶ /y, more robust defence in depth approach -diversity, specific measures for each DiD level, integration of external events and hazards in safety concepts)

and

- public acceptability (No area submitted to off-plant emergency planning, Low environmental impact in normal operation and design basis after Chernobyl (1986), NewYork (2001) and Fukushima
- Hardened economic design objectives (competition with other sources)
 - profitability of project (availability>90% along life-time, short refuelling- outages, long cycles, reducedinvestment ⇒large size, design simplification, construction duration)
 - Investment protection (lifetime 60-80 years, low rate of difficult-to-repair failures, low core melt frequency < 10⁻⁵, proven technology > no leaps)

Gen-III reactors are not Gen 4 !!!

- No design requirement(s) for sustainability (saving U₂₃₅ resources)
- No burning of minor actinides

Safety concepts of NPP's-General

Major protection goals for NPP to be matched by design

- Confinement of radionuclide inventory
- Coolability at any time irrespective of origin and source
- Control of reactivity
- Defence in Depth (DiD) approach assignment of safety levels

lev.	cond.	aim	measures	consequences
1	normal	prevention of anormal operation or failures	Conservative design, high quality contruction, qualified personnel	No measures
2 🗸	operational failure	condition control, detection/ identification of reason	Control, limitation/ protection measures and survey functions	After short time restart
3 🗸	Design basis accident (DBA)	control of DBA within design (e.g. multiple failures of safety functions)	Engineering safety charact. and implementation of controlled accident measures	Planned restart anticipated (after inspection, repair,qualification)
4	Severe accident (BDBA)	Control of critical plant states incl. prevention of propagation	Complementing measures and accident management	Re-start not required
5 🔶	Post severe accidents	Mitigation of radiolog. consequences	Off- plant emergency measures	No plant re-start assumed

Design basis safety: Gen II and Gen- III Reactors

NPP: Complex System with Multi-physic and Multi-scale Phenomena

Main challenges for risk informed safe design :

- Neutronic, thermal hydraulic, mechanical design ALL ARE COUPLED
- Passive safety systems for ECC and decay heat removal
- Control of severe accidents (core-catcher, passive containment cooling, PAR)

Enlarged computational capabilities and ressources allow for

- more detailled local analyses in the reactor design
- improved design safety of new plants (Gen III)
- retrofitting of running plants (Gen II)

Recipe to solve the sophisticated problem envolve:

- Multi-scale problems
- Multi-physics problems
- Multi-scale and multi-physics
- including transients
- A very challenging problem with numerous feedbacks !

TH- problem – "classic route"

- Fast running real time capability
 - reactor operation
 - principle design

System code level

TH- multi-scale –problems –CFD Flow in reactor pressure vessel (RPV) micro ➡ macro scale

- Down comer and lower plenum:
- Computing effort 2 weeks CPU time (12 processes parallel) for 1800s transient
- Development chain
 - ∆p obtained from standalone full detail model (3 Mio cells / column)
 - Implementation of ∆p coefficient in the coarser RPV model (5000 cells / column)

TH -multi-scale -problems RPV Primary loop (VVER-1000)

- RPV
- Heat exchanger
- Primary loops:
 - Steam generators and pumps
 - Pipes
 - Valves

© M. Böttcher, INR

TH Validation essential corner-stone IAEA –Benchmarks

Example:

OECD/NEA Benchmark: Pump Trip exercise

- Void fraction
- Pressure drop
- Critical power

Fuel assembly (FA)

Advanced methodologies for the analysis of PWR and BWR Transients

- Coupled thermal-hydraulics and neutronics
- High-fidelity / multi-physics developments: from FA to pin-based solutions
 - Direct prediction of local safety parameters at cell level
 - Reduction of conservatism

Actual Trend: Multiphysics and multiscale problems "Two routes" Fuel Assembly level simulations
 conservative safety parameters 2 Pin level simulations Iocal safety parameters, but costly economic AND save designs demand high spatial resolution on core level NODE **PWR Fuel PWR Core: 3D model** Assembly

Actual Trend Multi-/scale -physics

- Iocal FA or even pin data
- Mesh super-position at FA level with pin-power- reconstruction
- Demanding High Performance Computing (HPC) and parallelization

Next steps underway

+ tracking each neutron

+ Monte Carlo methods

AMM=Accident management measures

Evolutionary Safety Systems- Gen III

Several severe accident strategies

In-vessel retention

ex-vessel by means of "core catcher"

© AREVA-NP,2011

Goal: reliable physics description **>** predictive tool development

Large Gen-III Reactors currently deployed (PWR)

AES (Russia)

4 SG, 4 Pumps, 1070MWe, Horizontal HEX,
 Passive safety features, Core catcher, soda injection system
 BUL, RUS

ATMEA (MHI-AREVA)

3 loop, 1150MWe,
3-safety trains
2 stage accumulator,
heavy airplane crash design
100% MOX fuelling possible,
24m fuel cycle
interests but no built

© images courtesy of companies

© images courtesy of companies

Nuclear Waste

Nuclear is a generation contract !!!!

requiring accetance & stability

- Capital investment
- Long living fission products
- Waste management strategies in all aspects

Why and what masses to expect ? Fuel and activated material

38 Origin: Burnup-33MWd/t, 1100day irr., 17x17 LWR assembly

Nuclear Waste

Reprocessing, conditioning and transport mandatory

Options for subsequent treatment of radionuclides

- Disposal (geological w/o access, deep underground /near soil ,.....)
- Transmutation

What is transmutation ?

transfer of radionuclides by neutron induced fission or neutron capture in another element

Nuclear Waste - Transmutation

How to minimize radiologic burdens ? Fuel cycle required

Final repository required but substantially smaller !

Nuclear Waste - Transmutation

What type of fast neutron spectrum reactors ? – Two options

dependent on further nuclear utilization option !!!

International contributions to Generation IV

Strategic aims:

European

Union

Argentina

- development of new NPP by 2030 in internat. cooperation
- multifunctionality (electricity, desalination, hydrogen, heat)

Technologic aims

- better economics
- improved sustainability
- increased safety
- enlarged proliferation resistance

<u>Status</u>

continuous worldwide cooperation

Switzerland South Korea South Africa

+China, Russia since 2006!

6 dedicated concepts

United

Kingdom

elaboration of standards

Brazil

Gernmany ? --through EU

France

Japan

Canada

U.S.A.

42

Generation IV Forum: selection of six nuclear systems

Summary and perspective

- fission energy fission substantial part of worldwide energy production.
- mostly generated by Gen –II NPP systems
- **fission pursued worldwide** in numerous industrial countries
- current deployment focused on large scale LWR
- Substantial scientific progress in last decade with respect to safety
 - interesting multi-physics and multi-scale phenomena
 - accurate description of transient processes in plants
 - internationalisation of research and development by collaboration, agreements and bi-lateral contracts
 - current deployment focused on large scale LWR
- nuclear energy production is a generation contract !
- nuclear waste management is an essential part of nuclear evolution
- transmutation in reactors is a credible option to minimize burden on future generations (both: fuel, repository demands)
- irrespective of societal decision on use of nuclear fission energy research, development and education must be of vital interest to assure credible assessement capability.