

79. DPG-Tagung- Arbeitskreis Energie

Small is beautiful but big is better: the tale of wind energy technology development

Po Wen Cheng

Institute of Aircraft Design University of Stuttgart

The Wind Energy Technolog Development

- Where it started back in 1980 and key milestones
- Where we are today onshore and offshore
- The quest for the lowest CoE , onshore and offshore
- Where we are heading tomorrow
- Conclusions and outlook

SWE/ Wind Turbine Development Milestones Starting point: 50kW, 3 blades, upwind, fixed speed stall regulated Major milestones that propel the growth of wind turbine size -Introduction of pitch system for multimegawatt wind turbine -DFIG concept and variable speed operation Cp-max tracking

Rotor Diameters at Product Introduction

S7.0-171 (Samsung Heavy Industry) Power : 7 MW Tip height : 193,5 m Rotor diameter : 171,2 m Tower top mass: unknown

V164 (Vestas Wind Power) Power : 8 MW Rotor diameter : 164 m Tower top mass: ca.500t

Wind smallest wind turbine

Power : unknown Rotor diameter : 1.69 mm On the surface of a smartphone fit ca. 2000 micro turbines

SWE Cost of Wind Farms and Wind Energy

SWE The Quest for a Lower Cost of Energy Onshore

Annual mean wind speed at hun height (138 Meter) : 5,5 m/s E82: Full load hours 1874h, AEP: 3841MWh, capacity factor: 21,4% N117: Full load hours 2631h, AEP: 6314MWh, capacity factor : 30,0%

Nordex N117

Enercon E82

- Increase hub height to increase mean wind speed
- Increase rotor diameter to increase power capture at partial load

Reduce the uncertainty of the wind resource estimate Forschungsnetzwerk

- Mobile measurements: UAV- Helicopter and Plane
- **Fixed point measurement: metmast 80 meters**
- LiDAR measurements: long-range and short-range

VININI

WINDFORS

SWF

. .

LiDAR Feed-forward Controls Field Test

First LIDAR feed-forward controller field tests successfully demonstrated (May 2012)

University of Stuttgart (SWE) LIDAR - CART2

Catch the Wind LIDAR – CART3

- reduction in standard deviation of the generator speed of 30% at low frequencies
- but increase of 30% before solving the hard target problem
- similar behavior for the tower base bending moment and other loads

Consider the System Cost: Example of Wind Energy and Combined Storage in Gaildorf

4 x 4.5 MW Wind Turbine 1 x 12 MW Hydro Turbine 160000 m3 Water Storage in the Tower 55 Hours of Power for 12000 Inhabitants

SWE The cost reduction potential of offshore wind energy lies in installation and logistics

SWE Reliability is another key to the reduction of CoE for offshore wind energy

Normalized failure rate of sub-systems and assemblies for turbines of mutiple manufacturers in the database

www.uni-stuttgart.de/windenergie

SWE Reduction of large array loss through wind farm

control

[Source: Wake effects at Horns Rev and their influence on energy production Fug.: Dong energy]

17

Outlook and Conclusions

• The current concept of horizontal axis wind turbine will still dominate the market in the future

WINDFORS Windenergie

Forschungsnetzwerk

- Big is indeed the only way to reduce cost of energy for large scale wind energy generation
- Cost reduction potentials are different for onshore and offshore wind energy
- For large penetration of wind energy and renewable energies in general, it is necessary to consider not only the CoE but the system integration cost
- It is unlikely that the turbine size will grow much larger beyond 10 MW (never say never)

powen.cheng@ifb.uni-stuttgart.de powen.cheng@windfors.de