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some aspects of extreme, large and rare



Central Limit Theorem
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Central Limit Theorem:

scaled sample mean
1√
N

N∑
n=1

xn converges to Gaussian

if second moment exists

What about the distributions of the minima and maxima ?



Extreme Value Theory

probability of maximum P
(max)
N (x) = (P (x))N

cumulative distribution P (x) =

x∫
−∞

p(x′)dx′

large N limit: if properly rescaled P
(max)
N (x) converges, then to

exp
(
−(1 + ξx)−1/ξ

)
or

exp (− exp(−x)) , ξ = 0

where ξ depends on p(x)

Fisher, Tippett (20’s), Gnedenko (40’s)
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An Example from Finance

prices S(t), returns

r∆t(t) =
S(t+ ∆t)− S(t)

S(t)

non–Gaussian, heavy tails! (Mantegna, Stanley, ..., 90’s)



Distribution of Maxima and Minima in Return Series

(Keller–Ressel, Steiner, 2005)



Large Deviations Theory

example: coin–tossing with xn ∈ {0, 1}, n = 1, . . . , N

for a given value z with 0.5 < z < 1, the tail probability

that sample mean
1

N

N∑
n=1

xn is larger than z approaches

exp (−NI(z))

with “entropy”

I(z) = (1− z) ln(1− z)
+ z ln z + ln 2

in the large N limit

Cramér (30’s), Gärtner (70’s), Ellis (80’s)
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global warming and record statistics



Temperature Records

a record is an event larger or smaller than everything before

yearly global temperatur deviations in degree Celsius
from long–term mean value

upwards trend detrended

many more high temperature records due to trend !

(Wergen, Krug, Rahmsdorf, 2014)



Linear Drift Model

discrete time t = 1, 2, 3, . . ., time series xt = σεt
independent random variables εt with symmetric
distribution, standard deviation σ −→
probability that xt is a record is q(t) = 1/t

now: model with linear trend xt = ct+ σεt with
drift constant c −→

q(t) ≈ 1

t
+
c

σ
f(t)

with slowly varying function f(t) =
2
√
π

e2

√
ln

(
t2

8π

)

(Wergen, Krug, 2010)



Model versus Data

European temperature records on daily
basis, compared to same calendar days

c/σ = 0.014/year

more high, less low temperature records

monthly based deviations,
decade 2001 to 2010
black: 20 times over 1/t

(Wergen, Krug, Rahmsdorf, 2014)



Issues Beyond the Previous Examples

several other challenges are often encountered in systems of
different kinds, to name but a few:

finite sample size or short time series

non–stationarity or non–locality

correlations



microwave experiments on freak waves



Freak Waves — Caustics and Branching

monster wave tsunami

flow in 2d electron gas caustics in pool



Microwave Experiments

experimental setup disorder potential

field distribution at 31GHz flow in 2d electron gas

(Barkhofen, Kuhl, Stöckmann et al., 2010)



Intensity Distribution — Fluctuating Variance

intensities I at each position
Rayleigh distributed

p(I|z) =
1

z
exp

(
−I
z

)

but with spatially fluctuating
variance z, data fit

χ2
ν(z) ∼ zν/2−1 exp

(
−z

2

)
χ2
ν distribution with ν = 30...50

degrees of freedom



Compounding the Global Distribution

average Rayleigh distribution over variances

〈p〉(I) =

∞∫
0

p(I|z)χ2
ν(z)dz ∼ I(ν−2)/4K(ν−2)/2

(√
2νI
)

compounding, mixture (mathematics), super statistics (physics)

much heavier tails (linear theory!), hot spots still outside

(Höhmann, Kuhl, Stöckmann, Kaplan, Heller, 2010)



price distributions and credit crisis



Financial Correlations are Non–Stationary

fourth quarter ’05

returns rk(t), rl(t), t = 1, . . . , T
Pearson correlation coefficient

Ckl =
1

T

T∑
t=1

rk(t)rl(t)

for K stocks, C is K ×K matrix

first quarter ’06



Average over Ensemble of Correlation Matrices

multivariate distribution of returns r = (r1, . . . , rK) is Gaussian

g(r|Cs) ∼ exp

(
−1

2
r†C−1

s r

)
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if analyzed in short time intervals with correlation matrix Cs

idea to handle long time intervals:
replace Cs −→WW † with random correlation matrix WW †

〈g〉(r|C0) =

∫
g(r|WW †)f(W |C0)d[W ]

where f(W |C0) is Gaussian, such that WW † fluctuate around
empirical C0 measured in whole, long time interval

(Schmitt, Chetalova, Schäfer, Guhr, 2013)



A Surprising Observation

〈g〉(r|C0) =

∞∫
0

g(r|zC0)χ2
N (z)dz ∼

K(K−N)/2

(√
Nr†C−1

0 r

)
√
Nr†C−1

0 r
(K−N)/2

where N measures strength of
fluctuations around C0

same form as compounded
distribution of intensities in
microwave experiments

compounding traced back to
fluctuating correlations

10−4

10−3

10−2

10−1

1

p
d
f

10−4

10−3

10−2

10−1

p
d
f

-4 0 4

r̃



Credit Risk and Instability of Financial Markets

many companies borrow money from bank,
stock prices reveal the companies’ ability to pay back
−→ distribution of losses for the bank depends on returns

idea: use ensemble averaged 〈g〉(r|C0) for quantitative study
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generic result: diversification does not work!

(Schmitt, Chetalova, Schäfer, Guhr, 2014)



Summary

universal features of extreme values and large deviations

linear drift model quantitatively models global warming

non–stationarity and correlations often important

microwave measurements of freak waves,
fluctuating variances handled with compounding

compounding traced back to fluctuating correlations

model for multivariate returns distribution,
generic features of credit risk


