Fakultät für Physik

Rare and Large Events: Examples from the Natural Sciences and Economics

Thomas Guhr

rare events: optimal solutions and challenges — from charge transfer reactions to supervolcanoes DPG spring meeting, Berlin, March 2014

Outline

- some aspects of extreme, large and rare
- global warming and record statistics
- microwave experiments on freak waves
- price distributions and credit crisis

some aspects of extreme, large and rare

Central Limit Theorem

independent random variables $x_n, n = 1, \dots, N$ distribution $p(x_n)$

Central Limit Theorem: scaled sample mean $\frac{1}{\sqrt{N}}\sum_{n=1}^N x_n$ converges to Gaussian if second moment exists

What about the distributions of the minima and maxima ?

Extreme Value Theory

probability of maximum $P_N^{(\max)}(x) = (P(x))^N$ cumulative distribution $P(x) = \int_{-\infty}^x p(x')dx'$

large N limit: if properly rescaled $P_N^{(\max)}(x)$ converges, then to

$$\exp\left(-(1+\xi x)^{-1/\xi}\right)$$

or

 $\exp\left(-\exp(-x)\right), \ \xi = 0$ where ξ depends on p(x)

Fisher, Tippett (20's), Gnedenko (40's)

An Example from Finance

prices S(t), returns

$$r_{\Delta t}(t) = \frac{S(t + \Delta t) - S(t)}{S(t)}$$

non-Gaussian, heavy tails! (Mantegna, Stanley, ..., 90's)

Distribution of Maxima and Minima in Return Series

(Keller-Ressel, Steiner, 2005)

Large Deviations Theory

example: coin-tossing with $x_n \in \{0, 1\}, n = 1, \dots, N$

for a given value z with 0.5 < z < 1, the tail probability that sample mean $\frac{1}{N}\sum_{n=1}^N x_n$ is larger than z approaches

Cramér (30's), Gärtner (70's), Ellis (80's)

global warming and record statistics

Temperature Records

a record is an event larger or smaller than everything before

yearly global temperatur deviations in degree Celsius from long-term mean value

many more high temperature records due to trend !

(Wergen, Krug, Rahmsdorf, 2014)

Linear Drift Model

discrete time $t = 1, 2, 3, \ldots$, time series $x_t = \sigma \varepsilon_t$ independent random variables ε_t with symmetric distribution, standard deviation $\sigma \longrightarrow$ probability that x_t is a record is q(t) = 1/t

now: model with linear trend $x_t = ct + \sigma \varepsilon_t$ with drift constant $c \longrightarrow$

$$q(t) \approx \frac{1}{t} + \frac{c}{\sigma}f(t)$$

with slowly varying function
$$f(t) = \frac{2\sqrt{\pi}}{e^2} \sqrt{\ln\left(\frac{t^2}{8\pi}\right)}$$

(Wergen, Krug, 2010)

Model versus Data

European temperature records on daily basis, compared to same calendar days $c/\sigma = 0.014/\text{year}$ more high, less low temperature records

monthly based deviations, decade 2001 to 2010 black: 20 times over 1/t

(Wergen, Krug, Rahmsdorf, 2014)

Issues Beyond the Previous Examples

several other challenges are often encountered in systems of different kinds, to name but a few:

- finite sample size or short time series
- non-stationarity or non-locality
- correlations

microwave experiments on freak waves

Freak Waves — Caustics and Branching

monster wave

tsunami

flow in 2d electron gas

caustics in pool

Microwave Experiments

experimental setup

disorder potential

field distribution at 31GHz

flow in 2d electron gas

(Barkhofen, Kuhl, Stöckmann et al., 2010)

Intensity Distribution — Fluctuating Variance

intensities \boldsymbol{I} at each position Rayleigh distributed

$$p(I|z) = \frac{1}{z} \exp\left(-\frac{I}{z}\right)$$

but with spatially fluctuating variance z, data fit

$$\chi_{\nu}^2(z) \sim z^{\nu/2 - 1} \exp\left(-\frac{z}{2}\right)$$

 χ^2_{ν} distribution with $\nu=30...50$ degrees of freedom

Compounding the Global Distribution

average Rayleigh distribution over variances

$$\langle p \rangle(I) = \int_{0}^{\infty} p(I|z) \chi_{\nu}^{2}(z) dz \sim I^{(\nu-2)/4} \mathcal{K}_{(\nu-2)/2} \left(\sqrt{2\nu I}\right)$$

compounding, mixture (mathematics), super statistics (physics)

much heavier tails (linear theory!), hot spots still outside

(Höhmann, Kuhl, Stöckmann, Kaplan, Heller, 2010)

price distributions and credit crisis

Financial Correlations are Non–Stationary

returns $r_k(t)$, $r_l(t)$, t = 1, ..., TPearson correlation coefficient

$$C_{kl} = \frac{1}{T} \sum_{t=1}^{T} r_k(t) r_l(t)$$

for K stocks, C is $K \times K$ matrix

fourth quarter '05

first quarter '06

Average over Ensemble of Correlation Matrices

multivariate distribution of returns $r = (r_1, \ldots, r_K)$ is Gaussian

$$g(r|C_s) \sim \exp\left(-\frac{1}{2}r^{\dagger}C_s^{-1}r\right) \qquad \overset{\underline{\forall}}{\underline{\exists}}_{10^{-3}} \qquad \overset{\underline{\forall}}{\underline{\exists}}_{10^{-3}} \qquad \overset{\underline{\forall}}{\underline{d}}_{\frac{10^{-1}}{r}} \end{matrix}\qquad \overset{\underline{\forall}}{\underline{d}}_{\frac{10^{-1}}{r}} \end{matrix}\end{matrix}\end{matrix}\end{matrix}} \qquad \overset{\underline{\forall}}{\underline{d}}_{\frac{10^{-1}$$

if analyzed in short time intervals with correlation matrix C_s

idea to handle long time intervals: replace $C_s \longrightarrow WW^{\dagger}$ with random correlation matrix WW^{\dagger}

$$\langle g \rangle(r|C_0) = \int g(r|WW^{\dagger})f(W|C_0)d[W]$$

where $f(W|C_0)$ is Gaussian, such that WW^{\dagger} fluctuate around empirical C_0 measured in whole, long time interval

(Schmitt, Chetalova, Schäfer, Guhr, 2013)

A Surprising Observation

$$\langle g \rangle(r|C_0) = \int_0^\infty g(r|zC_0)\chi_N^2(z)dz \sim \frac{\mathcal{K}_{(K-N)/2}\left(\sqrt{Nr^{\dagger}C_0^{-1}r}\right)}{\sqrt{Nr^{\dagger}C_0^{-1}r}}$$

where N measures strength of fluctuations around ${\cal C}_0$

same form as compounded distribution of intensities in microwave experiments

compounding traced back to fluctuating correlations

/

Credit Risk and Instability of Financial Markets

many companies borrow money from bank, stock prices reveal the companies' ability to pay back \longrightarrow distribution of losses for the bank depends on returns

idea: use ensemble averaged $\langle g \rangle (r|C_0)$ for quantitative study

generic result: diversification does not work!

(Schmitt, Chetalova, Schäfer, Guhr, 2014)

Summary

- universal features of extreme values and large deviations
- linear drift model quantitatively models global warming
- non-stationarity and correlations often important
- microwave measurements of freak waves, fluctuating variances handled with compounding
- compounding traced back to fluctuating correlations
- model for multivariate returns distribution, generic features of credit risk