

105 billion tons per year of biomass is produced by photosynthesis

= two great pyramids of Giza per hour... every hour of biomass

Photosynthesis involves two light reactions in series: Photosystem 1 to reduce CO_2 and Photosystem 2 to oxidize H_2O

1. A plant in your windowsill absorbs all the incident light:

on an average sunny day 10⁶ photons per second thanks to highly concentrated chlorophylls in proteins organized in the thylakoid membrane

- 1. A plant in your windowsill absorbs all the incident light: 10⁶ photons per second thanks to highly concentrated chlorophylls in proteins
- 2. A photosynthetic excitation can be transferred over 1000s of chlorophylls without getting lost thanks to superposition states and coherence

Delocalized Excitations φ_i vs $\psi_k = \sum_{i=1}^N c_{ki} \varphi_i$

localized

delocalized

2D-ES to reveal Coherence

- 1. A plant in your windowsill absorbs all the incident light: 10⁶ photons per second thanks to highly concentrated chlorophylls in proteins
- 2. A photosynthetic excitation can be transferred over 1000s of chlorophylls without getting lost thanks to superposition states and coherence
- 3. Reaction centers separate charges by electron tunneling on a picosecond timescale

- 1. A plant in your windowsill absorbs all the incident light: 10⁶ photons per second thanks to highly concentrated chlorophylls in proteins
- 2. A photosynthetic excitation can be transferred over 1000s of chlorophylls without getting lost thanks to superposition states and coherence
- 3. Reaction centers separate charges by electron tunneling on a picosecond timescale
- Plants extract electrons from H₂O with a 'hole efficiency' of 1 using an ingenious complex management of electrons and protons

- 1. A plant in your windowsill absorbs all the incident light: 10⁶ photons per second thanks to highly concentrated chlorophylls in proteins
- 2. A photosynthetic excitation can be transferred over 1000s of chlorophylls without getting lost thanks to superposition states and coherence
- 3. Reaction centers separate charges by electron tunneling on a picosecond timescale
- 4. Plants extract electrons from H_2O with a 'hole efficiency' of 1 using an ingenious complex management of electrons and protons
- 5. Maximum energy efficiency solar->fuel is 30%, over the complete solar spectrum 12%, to biomass 2-3 % or less

Solution: Artificial Photosynthesis

The artificial leaf
The bio-hybrid device
The photosynthetic 'solar fuel cow'
Improving natural photosynthesis

Solution: Artificial Photosynthesis

1. The artificial leaf

2. The bio-hybrid device3. The photosynthetic 'solar fuel cow'4. Improving natural photosynthesis

Artificial Photosystem II

The long lifetime of the highly oxidizing relay provides a good match for the slow kinetics of the OEC or metal oxide catalysts.

Artificial Photosynthesis

The artificial leaf
The bio-hybrid device
The photosynthetic 'solar fuel cow'
Improving natural photosynthesis

Wiring photosynthetic enzymes to electrodes⁺ Adrian Badura, Tim Kothe, Wolfgang Schuhmann and Matthias Rögner DOI: 10.1039/c1ee01285a

Artificial Photosynthesis

The artificial leaf
The bio-hybrid device
The photosynthetic 'solar fuel cow'
Improving natural photosynthesis

Algae and cyanobacteria for biofuel production

Advantages: easy to grow Use of salt water

No competition for land with food

Semi-productive levels (high value products, optimization of fuel productions, ...

Synthetic biology (new metabolic pathways leading to fuel)

'Photofermenting' bacteria

MIX Photosynthesis with Fermentation

FERMENTATION

Sugar-P

ethanol butanol propanediol lactic acid

Photanol[®], concept (2007)

Fermenting bacteria

DNA coding for fermentation

Photosythetic bacteria

Photofermenting bacteria

Gentransfer to

Cyano bacteria (Blue green algae)

Artificial Photosynthesis

The artificial leaf
The bio-hybrid device
The photosynthetic 'solar fuel cow'
Improving natural photosynthesis

Directing the flow of energy in a reengineered photosynthetic membrane with true tandem cell performance

Acknowledgements

Huub de Groot (Leiden) Roberta Croce (VU Amsterdam) Eli Romero (VU Amsterdam)

Klaas Hellingwerf (Un. Van Amsterdam) Wilmar van Grondelle (Photanol)

Tom Moore (ASU) Greg Scholes (U. Toronto)