Computational studies of material properties in CuInSe₂ photovoltaic solar cell material

Laura Oikkonen,[†] Maria Ganchenkova,[‡] <u>Ari P Seitsonen</u>[¶] & Risto Nieminen^{†,§}

[†] COMP Centre of Excellence, Department of Applied Physics, Aalto University, Finland
 [‡] Department of Materials Science, National Research Nuclear University (MEPhI), Russia

 [¶] Physikalisch-Chemisches Institut, University of Zurich
 & Départment de Chimie, École Normale Supérieure, Paris
 [§] Dean's Office, Aalto University, Finland

DPG Berlin, March 16th 2015

Outline

Culn(Ga)Se₂ as solar cell material Motivation

2 Method

CIGS

- Material with direct band gap used in thin-film solar cells
- Used in photo-voltaics: Generation of electron-hole pairs that are separated and collected
- High efficiency, > 20% demonstrated
- Band gap can be tuned from 1.0 (CIS) to 1.7 eV (CGS)

CIGS: Commercialisation

Commercial

Residential

CIGS: Commercialisation

Ari P Seitsonen (UZH & ENS)

CIGS: Commercialisation

Company Profile

Headquartered in Tokyo, Japan, Solar Frontier is committed to the superior potential of CIS technology to set the world's standard for converting sunlight into usable energy. Based on more than 30 years of research and development, we are committed to leading the world in developing the full potential of CIS with an investment now exceeding \$1 billion. This makes Solar Frontier the world's largest manufacturer of CIS solar panels, at more than 1GW of annual production capacity, primarily at our 1GW plant in Miyazaki, Japan.

Solar Frontier

Daiba Frontier Building 2-3-2, Daiba, Minato-ku,135-8074, Tokyo, Japan TEL:+81 3 5531 5626 FAX:+81 3 5531 3677 www.solar-frontier.com E-mail:info@solarfrontier.co.jp

 Capyright for all material appearing on this brochure belongs to Solar Frontier. Solar Frontier reserves the right, at our sole discretion, to change, modify, add, or delete portions of the content at any time without notice, but makes no commitment to update any content which may be out of date.

The data contained in this brochure indicates nominal data of our products as of the shipment of the products. We do not make any warranty with respect to quality or performance of our products based on this brochure.

CIGS: Computational modelling of defects

- Defects always present; affect properties of host material
- Point defects: Vacancies, inter-stitials, anti-sites
- Impurities, grain boundaries, ...
- Our goal: Modelling of point defects and Na impurity in order to support and understand experimental results
- Density functional theory calculations

Motivation

CIS: PhD thesis of Laura Oikkonen

Atomic-scale solar cell ma from hybrid- calculations	e defects in terial CuInSe ₂ functional
Laura Oikkonen	
, X X	
All Asito University	DISCIDENT

Laura E Oikkonen, Maria G Ganchenkova, Ari P Seitsonen, **Birsto M Nieminen**

- I Vacancies in CuInSe2: New insights from hybrid-functional calculations. Journal of Physics: Condensed Matter, 23, 422202, October 2011
- II Redirecting focus in CuInSe₂ defect studies towards selenium-related defects. Physical Review B, 86, 165115, October 2012
- III Mass transport in CuInSe₂ from first principles. Journal of Applied Physics, 113, 133510, April 2013
- IV Formation, migration, and clustering of point defects in CuInSe₂ from first principles. Submitted to Physical Review B. May 2013
- V Effect of sodium incorporation into CuInSe₂ from first principles. Journal of Applied Physics, 114. 083503, August 2013
- VI Formation, migration and clustering of point defects in CulnSe₂ from first principles. Journal of Physics: Condensed Matter, 26, 34, 345501, August 2014

Ari P Seitsonen (UZH & ENS)

Outline

3 Results

Method

Method: Density Functional Theory

- DFT-hybrid functionals (HSE06)
- Supercells with 32-144 atoms (GGA up to 512)
- Finite-size scaling

Outline

2) Method

Results

- Intrinsic defects
- Na impurity

4 Summary

CIS: Formation energy of defects

Ari P Seitsonen (UZH & ENS)

CIS via DFT

CIS: Formation energy of vacancies

Formation energies depend on chemical potential of

- electrons and ions
- id est preparation conditions of sample

Ari P Seitsonen (UZH & ENS)

CIS via DFT

CIS: Binding/interaction energy of defects

Intrinsic defects

CIS: Migration of defects

Ari P Seitsonen (UZH & ENS)

CIS via DFT

CIS+Na: Formation energy of defects

CIS+Na: Binding/interaction energy of defects

TABLE I. Binding energies (E_b) of Na-related defect complexes. The charge states of the isolated defects are 1– for V_{Cu} , 0 for Na_{Cu}, and 1+ for Na_i.

Complex	Charge state	$E_b (\mathrm{eV})$
$Na_{Cu} - V_{Cu}$	1-	0.00
$Na_{Cu} - 2V_{Cu}$	2—	-0.05
2Na _{Cu}	0	-0.03
$Na_{Cu}-Na_i$	1 +	0.12
(Na – Na) _{Cu}	1+	0.12
$2(Na - Na)_{Cu}$	2+	0.15

CIS+Na: Migration of defects

Barrier for $Na_{Cu} - V_{Cu} \leftrightarrow V_{Cu} - Na_{Cu}$ lower than for diffusion of V_{Cu}

 \Rightarrow Trapping of Cu vacancies by Na

Outline

1) Culn(Ga)Se₂ as solar cell material

2 Method

3 Results

Summary

- DFT-hybrid functional calculations
- Point defects: Se-related defects most relevant due to states in gap
- Clustering, migration of defects investigated
- Na impurity traps Cu vacancies
- Things not shown (because not yet done): Grain boundaries, electric fields, interfaces, ...

CIS: Selenium vacancy

CIS: Band structures

CIS: Finite-size scaling

CIS: Comparison of defect formation energies

CIS+Na: Band structures

