Electricity by Intermittent Sources F. Wagner, IPP Greifswald

Supply by electricity – today and in the future

Mix between wind and PV, onshore and offshore wind

load = annual consumption

Method and assumptions

Method: Take load-, wind-, PV-... data from 2012 and scale the intermittent RES to higher capacities (e.g. to the **100% case**)

Assumptions:

no savings in electricity consumption hydro remains the same, subtracted from load \rightarrow reduced load no nuclear power no biogas no losses

Topics:

How much power has to be installed? The remaining need for back-up power? The extent of surplus energy? Dimension of storage? The dynamics of the back-up system? The conditions for DSM (demand-side management)? The amount of CO2 reduction? Conditions of a 100% supply by RES? What could be a reasonable share by intermittent RES? The benefits of an EU-wide use of RES Costs of RES?

Major Results

How much power has to be installed? Enough to serve Europe in good days

The remaining need for back-up power?

The extent of surplus energy? Formally enough to serve Poland

Dimension of storage? For the 100% case: 660 x present capacity

The dynamics of the back-up system? From 0 up to the load; strong gradients

The conditions for DSM (demand-side management)? Cheap electricity prices during the day The amount of CO2 reduction? Not to the level of France, Sweden...

Conditions of a 100% supply by RES? Use of biogas (e.g. 40 TWh) and savings (down to 30%)

What could be a reasonable share by intermittent RES? 40%

The benefits of an EU-wide use of RES? Effects in the order of 20-30%

Costs to implement RES? high

Results in more detail: Back-up system

power (MW)

the last 6 weeks in 2012

The power of the back-up system remains high

It has to meet the full dynamic range from 0 to nearly peak load

 \rightarrow the power gradients increase strongly

100%, optimal mix case

Mo 9.1.2012 – Su 12.2.2012

Mo 9.1.2012 – Su 12.2.2012

Mo 9.1.2012 – Su 12.2.2012

Need from back-up depending on storage capacity

Demand-side-management

100%, optimal mix case

Demand-side-management: use of weekends

Full integration of weekends:

Additional use of RE: 7.9 TWh

Peak-load: $83 \rightarrow 63 \text{ GW}$

Reduction of back-up system: $131 \rightarrow 123 \text{ TWh}$

Specific CO2 emission

DPG, Berlin, 18.3.2015

Specific CO2 emission

Countries with hydro + nuclear are already there where others would like to be in 2050

Conditions of a 100% supply by RES

Main knobs: savings/efficiency + use of biomass Minor knobs: decrease of population, import (depatchable power), geo-th-power

Possible contribution by intermittent sources

Benefit from an EU-wide RES field

Annual duration curves for German RES field (dashed) and EU-wide RES field

the back-up energy is reduced by 24%,

the maximal back-up power by 9%,

the maximal surplus power by 15%,

the maximal grid power by 7%,

the typical grid fluctuation level by 35%

the maximal storage capacity by 28%

The structure of the EU-wind field

Correlation coefficients

Pair of countries	R
Germany-Denmark	0.56
Germany-Czech Rep.	0.53
Germany-France	0.45
Germany-UK	0.40
Germany-Belgium	0.39
Germany-Sweden	0.37
Germany-Ireland	0.19
Germany-Spain	0.05

In case of surplus – simultaneously also By the neighbours

DPG, Berlin, 18.3.2015

Interconnector capacity

Development costs

The German "Energiewende"

One has to discriminate between the aims and the selected route

The German "Energiewende"

The German "Energiewende"

