

FLUCTUATIONS FROM PHOTOVOLTAIC AND WIND POWER SYSTEMS

DETLEV HEINEMANN*, GERALD LOHMANN* MOHAMMED REZA RAHIMI TABAR**, MEHRNAZ ANVARI**

Carl von Ossietzky Universität Oldenburg, Institut für Physik, ForWind * AG Energiemeteorologie

** AG Turbulenz, Windenergie & Stochastik

OUTLINE

- Fluctuations in (future) power systems
- Characteristics of fluctuations in wind & solar power:
 - Increment statistics,
 - Higher moments,
 - Power spectra,
 - ...
- Conclusion and Outlook

POWER SYSTEM OPERATION CONTROL OF FREQUENCY, VOLTAGE & CURRENT

Grid operators have

- to ensure balance between generation and consumption and
- to keep U/I-limits
- at any given time

ENERGY TRANSITION

- Ongoing energy transition from non-renewable to renewable energies in Germany (and elsewhere)
- Shift of power production from mostly centralized to decentralized generation
- Change from demand-driven to supply-oriented energy system

Source: Max Planck Institute for Dynamics and Self-Organisation

POWER SYSTEM OPERATION CONTROL OF FREQUENCY, VOLTAGE & CURRENT

WEATHER DEPENDENCY

- Challenging integration of distributed generation especially due to non-controllable fluctuations (wind & PV)
- High importance of "commodity" Information especially with meteorological content...

An important – and new – constraint for future energy supply systems is its temporal and spatial varying production rate.

GERMAN POWER SECTOR TODAY DAILY PRODUCTION, SOLAR & WIND, 2014

DPG FRÜHJAHRSTAGUNG BERLIN 2015

GERMAN POWER SECTOR TODAY POWER* – SOLAR vs. WIND, 2014

* 15-min averages

Simultaneous power production from solar and wind

- Combined power production from solar and wind is approx. 38 GW max. (2014)
- Sum of solar and wind power generation is always smaller than installed single capacities
- Partial complementarity of wind and solar

Sources: B. Burger, Fraunhofer ISE, Leipziger Strombörse EEX

PROBLEMATIC FLUCTUATIONS

Fluctuations cause problems by ...

- Endangering the guaranteed meeting of power demand
- Affecting power quality (voltage and frequency stability)
- Affecting the necessary dimensioning of distribution grids

Source: Wikimedia commons user 'Wdwd' (data for Central Europe)

FLUCTUATIONS IN POWER GRIDS

Aim: Reliable grid* operation with high shares of renewables

- Quality of their respective control strategies and products are strongly influenced by 'flickering' in power input
- Generally, conditions of low flickering probabilities will allow more flexible network designs
- Conditions of high flickering call for larger aggregations of networks to balance the expected fluctuations
- Classification of wind and solar power resources in terms of their stochastic properties

* especially: distribution grid, incl. micro grids, virtual power plants

TYPICAL FLUCTUATIONS IN WIND & PV

- Variations on all time scales, from seconds to days
- Despite a smoothing effect, fluctuations in wind and solar power remain, even for spatial aggregations

ORIGINS OF SMALL-SCALE FLUCTUATIONS

- Wind: Atmospheric turbulence
 - depending on large scale advection, local thermodynamics, surface characteristics
- Solar: Cloud dynamics and size distribution
 - rapid succession of sunlight exposure and cloud shadows

Source: Kris Arnold via Flickr (http://flickr.com/people/wka/

PV: GLOBAL HORIZONTAL IRRADIANCE

Deterministic diurnal and seasonal variations need to be considered

time of day (UTC) on 2013-08-11 in Oldenburg

PV: GLOBAL HORIZONTAL IRRADIANCE

Detrending by normalization with clear-sky* irradiance

* irradiance under cloud-free conditions with fixed water vapor & aerosol content, i.e. deterministic

time of day (UTC) on 2013-08-11 in Oldenburg

PV: CLEAR-SKY INDEX

Normalized clear-sky index k* as a measure of atmospheric influence independent on solar geometry:

ratio of measured irradiance G and modelled clear-sky irradiance G_{clear}: G

time of day (UTC) on 2013-08-11 in Oldenburg

PV: TYPICAL SKY TYPES

Clear sky: Overcast: Broken clouds:

 $k^* \approx 1$ (low variability) $k^* << 1$ (low variability) high variability in k^*

STUDYING THE FOLLOWING ASPECTS...

- Understand the nature of such fluctuations in order to successfully manage decentralized power production
- Investigate the non-Gaussian characteristics of solar and wind power time series
- Study the occurrence and risk of flickering events with respect to different wind speeds and solar elevation angles for single point measurements and spatially averaged data

DATA USED IN SUBSEQUENT EXAMPLES:

- Normalized power from 12 German wind turbines
 area covered: approx. 4 x 4 km², 1 Hz
- Global irradiance from 17 sensors in Hawaii
 - ▶ area covered: approx. 1 x 1 km², 1 Hz

PV: TEMPORAL RESOLUTION OF MEASUREMENTS

For detailed resource analysis, ~ 1 min averages are ok For analysis of local fluctuations, at least 1 Hz is needed (otherwise a loss of information occurs)

ANALYZING SHORT-TERM INTERMITTENCY

Increment analysis

- Contour plots
 - values X(t) as a function of preceding values X(t-τ) with time increment τ
 - high short-term correlation between subsequent states --> more diagonal configuration
- Conditional probability density functions (cpdf)
 - of certain levels in the contour plots
 - visualizing the probabilities of values X(t) based on their preceding values X(t-T)

SHORT-TERM INTERMITTENCY WIND, 5 SEC INCREMENTS

Contour plot and conditional pdfs for three different power* levels

* normalized with rated power

SHORT-TERM INTERMITTENCY SOLAR, 1 SEC INCREMENTS

Contour plot and conditional pdfs for three different irradiance levels

WIND/SOLAR COMPARISON

Wind

- strong correlation for P(t) < 0.4</pre>
- weaker correlation for P(t) > 0.4
- positive skewness: fast increase more likely than decrease
- ► tails in cpdfs: large magnitude fluctuations → flickering

Solar

- strong correlation for $I(t) < 200 \text{ Wm}^{-2}$ and $I(t) > 1200 \text{ Wm}^{-2}$
- weaker correlation for 200 $Wm^{-2} < I(t) < 1200 Wm^{-2}$
- positive skewness less pronounced than for wind power
- tails less obvious (different τ!), but strongly non-Gaussian

INCREMENT STATISTICS PROBABILITY DISTRIBUTION FUNCTIONS (PDF)

On local scale: strongly non-Gaussian increment statistics

(pdfs are vertically shifted)

SHAPE OF INCREMENT PDFS

f=3 -> Gaussian distribution

Large flatness: more intermittent

note: $f_{windpower} > f_{windspeed}$

S=0 —> symmetric distribution

Large skewness: large difference between upand down-fluctuations

WIND & SOLAR: POWER SPECTRUM ANALYSIS

CONCLUSION

- High variability in local wind and solar power
 - weak short-term correlation for most values
 - non-Gaussian, fat-tailed cpdfs with positive skewness
- Risk of flickering increases with available energy
 - spatial smoothing reduces conditioned variability for wind
 - Iess pronounced smoothing effect for solar irradiance
- To improve comparisons of the fluctuation characteristics, measurements from the same location are needed

OUTLOOK

- Develop methods to suppress flickering events based on power electronics and control strategies
- Account for PV characteristics that affect flickering in system power output rather than solar irradiance
- Study impact of flickering on the operation of distribution grids, micro grids and virtual power plants
 - Low flickering probabilities allow flexible network designs
 - Conditions of high flickering call for larger aggregations of networks to balance the expected fluctuations