Deep geothermal fluid resources: Energetic use and beyond

Harald Milsch

with contributions by

Simona Regenspurg, Juliane Kummerow, Jörg Zotzmann, Ansgar Schepers and Ikenna V. Igboanugwo

> GFZ German Research Centre for Geosciences Section 4.1 – Reservoir Technologies International Centre for Geothermal Research ICGR

Introduction Operational Risks

Process Control

Beyond Energy

Contents

Thermal gradient

Introduction

Installed capacity

Shallow and Deep Geothermal Energy

© LIAG

Enhanced Geothermal Systems (EGS)

Hydraulic Stimulation

Geothermal Energy Systems

Geothermal Energy in Germany

- in NG-Basin from sandstone reservoirs (mesozoic / paleozoic)
- in Molasse-Basin from carbonate reservoirs (Malm-Karst)
- in Upper-Rhine Graben from various reservoirs (sedimentary / crystalline)

Geothermal Research Platform Groß Schönebeck

Doublet in North German Basin (NGB) Fluid-production from Sandstones / Volcanites $P \approx 450$ bar / T $\approx 150^{\circ}$ C

Fluid Composition / Liquid

Main components

- sodium chloride (NaCl)
- calcium chloride (CaCl₂)

Variability

- ratio of the main components
- presence / amount of trace elements

Physical and chemical properties of geothermal fluids can differ significantly from those of pure water

Example: Groß Schönebeck fluid (mM/L)

TDS = 265 g/L

Fluid Composition / Gas

Gas components in geothermal fluids:

 $\mathsf{N}_2,\ \mathsf{CO}_2,\ \mathsf{He},\ \mathsf{CH}_4,\ \mathsf{H}_2\mathsf{S},\ \mathsf{H}_2,\ \mathsf{(O}_2)$

gas	problem
CH ₄	green house gas
CO ₂	carbonate scale formation when degassing (shift of the equilibrium)
H ₂ S	corrosive, smell, toxic
H_2	corrosive

production well: 2003-2009

Example: Groß Schönebeck fluid (vol%)

Thermal Loop

Operational Risks

Two-Phase Flow

Redox Reactions

Oversaturation

Corrosion

Dissolution-Precipitation Reactions

Particle Transport

- 1. Requirement: know your fluid, rock and materials *properties*
- 2. Requirement: understand interaction processes

Goal: avoid / handle risks interfering with overall system functionality

- two-phase flow:
- redox reactions:
- oversaturation:
- corrosion:
- dissolution-precipitation reactions:
- particle transport:

- keep draw down low
- select appropriate materials
- keep temperature high
- use inhibitors
- select appropriate materials
- active / passive protection
- keep temperature high
- keep flow-rate below threshold
- filter fluid before injection
- avoid injection of incompatible fluids

Scaling Inhibitors

- Chemical substance added to the geothermal fluid:

Phosphonates

Polymers (e.g. Polycarboxylate)

Acids (e.g. HCl for calcite)

- Designed for specific types of scales (e.g., sulfates, carbonates)

Corrosion Protection

Active:	1) Cathodic protection:	with sacrificial anodes (Mg, Zn)
	2) Corrosion inhibitors:	remove dissolved oxygen from the fluid
Passive:	1) Metallic:	Zn, Ni, Cr / e.g. hot-galvanization
	2) Organic:	resins, thermoplastics, rubber, polymers
	3) Mixed organic-metallic:	zinc coating + organic layer (duplex method)

- Depending on location, geothermal fluids contain a plethora of dissolved elements and compounds.
- These may constitute an economic value if:
 - 1) their concentration is sufficiently high, and
 - 2) appropriate techniques exist to separate them either from the fluid or a precipitate.
- Substances of interest are, e.g.:

Silica, Lithium, Copper and Rare Earth Elements (REE) in the liquid phase and Helium in the gas phase.

Example: GrSk-Fluid SiO₂ 72 mg/L Li 200 mg/L Cu 10 mg/L (?) He > 20 NL/m³

- Mainly of interest for high enthalpy geothermal systems, e.g. Indonesia
- Various industrial applications:
 - fillers (e.g. paper, paint, plastics, rubber)
 - abrasives (e.g. sandpaper)
 - polishing (e.g. silicon wafers)
 - desiccants (e.g. food)
 - feedstock (e.g. semiconductors, catalysts)
- Price between 1–7 US\$/kg depending on application
- Processing technology:
 - producing silica sol from colloidal silica

Lahendong, Indonesia

Example 1: Silica

- Dominant sources to date:
 - from ores / minerals, e.g. LiAl[Si₂O₆]
 - from salt lakes, e.g. LiCl
- Various industrial applications:
 - batteries! (8000 t in 2015)
- Price ca. 5 US\$/kg for Li₂CO₃
- Processing technology:
 - solvent extraction
 - co-precipitation with AIOH
 - HMnO ion-sieve adsorbent
 - Li ion-sieve adsorbent

Rob Lavinsky, iRocks.com

Example 2: Lithium

Thank you very much for your attention

Bundesministerium für Wirtschaft und Energie

Bundesministerium für Bildung und Forschung

