

Power to Gas - an economic approach ?

Manfred Waidhas, Siemens AG, PD LD HY, 91058 Erlangen

DPG Conference, Berlin, March 17, 2015.

Unrestricted / © Siemens AG 2015. All Rights Reserved.

Integration of renewable energy ...will challenge the energy industry

The future CO₂-optimized energy scenario will require smart solutions.

Components and tasks for a future energy system

Managing increasingly complex energy

Cross-regional electricity transfer and integration of distributed generation

SIEMENS

Options to address Large Scale "Grid Storage" are limited

Segmentation of electrical energy storage

Key statements

- There is no universal solution for electrical storage
- Large scale storage can only be addressed by Pumped Hydro, Compressed Air (CAES) and chemical storage media like Hydrogen and Methane
- The potential to extend pumped hydro capacities is very limited
- CAES has limitations in operational flexibility and capacity

The future CO₂-optimized energy scenario will require smart solutions

The role of efficiency Often misleading information given

Efficiency as a function of electric load

SIEMENS

 "efficiency" is implemented part of the equation.

50

© Siemens AG 2015 All rights reserved.

"Power to Gas" needs a common understanding

The business cases of the individual P2G approaches differ notably.

The big picture "Hydrogen": Hydrogen is a multifunctional energy vector

H₂ drives the convergence between energy & industry markets

© Siemens AG 2015 All rights reserved.

The different use cases for green hydrogen follow a `merit order´ principle

- Compared to re-electrification ("power to power") the use of hydrogen in industry or mobility leads more easily to a positive business case.
- The three use cases have different maturity, market potential and market starting points.

SIEMENS

Utilization rate, CAPEX and Electricity Costs Impact on the H₂ Costs

- The H₂ production costs are mainly dependent from electricity costs, operational hours and capex.
- dynamic operation can yield incentives from "Regelenergie" and further select attractive low price periods for intermittent operation. This leads to lower H₂ production costs
- Benchmarking different technologies a comparison of capex costs only is misleading.

Economy of operation Threshold considerations

further assumptions:

- 1) maintenance costs = 0; efficiency electrolyzer system = 70 % vs HHV;
- 2) depreciation: 20y; interest rate: 5 %; maintenance: 3% of capex; efficiency electrolyzer system: 70 % vs HHV
- 3) natural gas prize: 3 ct/kWh

© Siemens AG 2015 All rights reserved.

Page 10

Economy of operation Threshold considerations

SIEMENS

further assumptions:

- 1) depreciation: 20y; interest rate: 5 %; maintenance: 3% of capex; efficiency electrolyzer system: 70 % vs HHV
- 2) natural gas prize: 3 ct/kWh

© Siemens AG 2015 All rights reserved.

Page 11

Key findings:

- electricity prizes of ≤ 50 €/MWh can be found at the EEX for more than 4000 h per year.
- Injection into the NG grid does not reveal a positive business case (even with capex=0) under given assumptions,
- On-site electrolysis may be an attractive alternative to trailer delivered H₂ if the electrolyzer has access to "cheap" electricity
- the business case will be supported by supplying grid services (like secondary control power)

but:

 grid fees in many cases ruin individual business cases

regulatory framework necessary

Power to Gas The long-term perspective

Scenario 2035+:

- CO₂ reduction targets require stringent measures in mobility, industry and power generation.
- High share of renewables
- Gas turbines as fast response and flexible (backup) power generation *
- Installations of different storage options
 - thermal
 - pumped hydro
 - batteries
 - H₂ (multifunctional)

The role of Power to NG-grid and SNG

- incremental injection of (green) H₂ or SNG into the NG grid; CO₂ savings in:
 - residential heating
 - industrial processes
 - re-electrification in gas turbines
- This will happen, if / as soon as:
 - all opportunities to sell H₂ into mobility and industry market are fully used
 - the commitment to existing CO₂ reduction targets is still valid

Limitation: SNG in any case requires CO₂ -sources near-by

- If / as soon as the H₂-concentration will exceed the regulatory limits of the NG grid, the combustion of pure H₂ becomes likely.
- The co-existence with other storage options is ongoing

Water Electrolysis – PEM* Electrolyzer Technology

Key Statements

- DC current splits water into H2 and O2
- production rate is related to current
- 9 liters of water yield 1 kg of hydrogen
- approx. 50 kWh electrical energy generate 1 kg hydrogen
- 1 kg of hydrogen contain 33,3 kWh energy

- high dynamic operation
- compact design, small footprint
- simple cold-start capability
- high pressure operation (less compression costs)
- rapid load changes
- high stability / low degradation

The PEM Technology has numerous important advantageous system properties

© Siemens AG 2015 All rights reserved.

* Proton-Exchange-Membrane

Page 13

Electrolyzer technology in a change

Yesterday

- demand driven, conventional electrical power generation; negligible share of renewables
- use of electrolyzers in continuous industrial processes with cheap electricity

Today

- Commitment to CO₂reduction; increasing share of renewables;
- first demonstrations to use existing electrolyzer technology for intermittent grid services

Solution

- intelligent integration of renewables and storage in a smart grid
- highly dynamic electrolyzers provide grid services; shift of excess electricity to fuels and chemicals

SIEMENS

Project "Energiepark Mainz": Delivery of the first Siemens Electrolyzer in the MW-range

Objective:

- Develop an energy storage plant for the decentralized use of grid bottlenecks in order to provide grid services ("Regelenergie")
- High efficiency, dynamic load changes
- Injection in local gas grid and multi-use trailer-filling
- 6 MW Electrolyzer (3 Stack à 2 MW)
- Timeline: 03/2013 12/2016

Milestones:

- Groundbreaking ceremony May 15, 2014
- Commissioning

1st half 2015

Outstanding performance paired with technical options allows integration in any project scope

Main Technical Data - SILYZER 200

•	Electrolysis type / principle	PEM
•	Rated Stack Power	1.25 MW
•	Dimension Skid	6,3 x 3,1 x 3,0 m
•	Start up time (from stand-by)	< 10 sec
•	Output pressure	Up to 35 bar
•	Purity H ₂ (depends on operation)	99.5% - 99.9%
•	H ₂ Quality 5.0	DeOxo-Dryer option
•	Rated H ₂ production	225 Nm³/h
•	Overall Efficiency (system)	65 – 70 %
•	Design Life Time	> 80.000 h
•	Weight per Skid	17 t
•	CE-Conformity	yes
•	Tap Water Requirement	1,5 I / Nm ³ H ₂

Hydrogen will be part of the future energy scenario

Summary

- CO₂ reduction targets are clearly linked with renewables. They will require storage capacities in the TWh range.
- Hydrogen is the only viable approach to store energy quantities > 10 GWh.
- In future there will be an increasing convergence between industry and energy markets.
- Power to Gas in an option to increase the flexibility of the electric grid.
- P2G is multifunctional: it provides three main business cases with individual maturity and market entry scenarios.
- P2G will start in economic niche applications and enable further extension of renewable power generation.