ETH zürich

Geothermal Energy and Geofluids

Combined CO₂-storage and geothermal energy extraction: potential and options

7. März, 2016, Deutsche Physikalische Gesellschaft (DPG) Konferenz - Regensburg

Strong Growth in Renewables

Hydropower and other renewable electricity generation, 1990-2010 million megawatthours

Geothermal energy is a baseload energy source

Source: Emerging Energy Research (2009)

ETH zürich

Geothermal: often forgotten but we can see the effects of it

Mantle convection

Modified from S. Rost, 2008

Volcanism

Earthquakes

Mountain formation

From Nasa

Black smokers

Photo from USGS

Geysers

Brantley (1983)

Photo from NOAA

Large energy source

World Geothermal Electricity (2015)

Operating Capacity (2015)

(GEA, February 2015)

Courtesy: Roland Horne, Stanford

Geothermal electricity growth

Bertani, 2015, WGC

Courtesy: Roland Horne, Stanford

Future Development

Announced Developing Capacity

Annnounced Nearterm Geothermal Goals

(GEA, February 2015)

Courtesy: Roland Horne, Stanford

Sources of Earth's heat

- Gravitational compression (formation of Earth)
- Radioactive decay of unstable elements in the crust
- Latent heat of crystallization (Ni, Fe in the outer core)
- Accretion (impacts of extraterrestrial objects)

Earth's Interior Dynamics

Geothermal Research Council (GRC)

Global Heat Flow

Pollack et al., Rev. Geophys., 1993

EHzürich

Focusing of Diffusive Heat Flow

1) Due to localized tectonic and/or magmatic activity.

2) Due to groundwater flow "collecting" diffusive heat and discharging it at hot springs.

ETH zürich

)

Estimated T at 5 km depth

Finding sufficient permeability, k, is difficult

OUTLINE

- 1) Subsurface energy extraction with CO_2 (combining CCS with geothermal) \rightarrow comparison to water
 - a) 5-spot well system
 - b) circular production well
- 2) Geothermal energy conversion to electricity (power): water vs. CO₂
- 3) Auxiliary heating of geothermally preheated geofluids: water vs. CO₂ (circular production well)
- 4) Summary

To generate electricity geothermally, we need: High-k, high-T, and lots of fluid (water/CO₂)

ETHzürich **CO**₂-Plume Geothermal (CPG)

What makes CO₂ a more efficient working fluid than water?

see also: Adams et al., Energy, 2014

ETH zürich

What makes CO₂ a more efficient working fluid than water?

see also: Adams et al., Energy, 2014

Injection and production wellhead pressure difference generated by thermosiphon

Direct and indirect 5-spot CPG well configurations

Numerical modeling: Classic 5-spot well system

- TOUGH2 Integrated finite difference code (Pruess, 1999, 2000, 2004, 2006, 2008)
- CO₂, H₂O, NaCl:
 - Geothermal energy
 - CO₂ sequestration

Reservoir Formation		Injection and Production Conditions	
Thickness	305 meters	Reservoir mapview area	1 km ²
Well separation	707.1 meters	Temperature of injected fluid	20 °C
Permeability	(variable)	Injection/production rate	ma x . 300 kg/s (variable)
Porosity (CPG)	20% (0.20)	Downhole injection pressure	260 ba
Rock grain density	2650 kg/m^3	Downhole production pressure	240 ba
Rock specific heat	1000 J/kg/°C	Injection/production duration	25 years
Thermal conductivity	2.1 W/m/°C		
Initial conditions		Boundary conditions	
Reservoir fluid	All CO ₂	Top and sides	No fluid or heat flow
Temperature	100 °C	Bottom	No fluid flow heat conduction
Pressure	250 bar		

ETH zürich

Reservoir temperature depletion: Modeling

Randolph and Saar, GRC Transactions, 2010

Heat energy (MW_{th}) extraction over time for both CO₂ and brine (sedimentary basin and EGS)

Randolph and Saar, GRL 2011

OUTLINE

- 1) Subsurface energy extraction with CO_2 (combining CCS with geothermal) \rightarrow comparison to water
 - a) 5-spot well system
 - b) circular production well
- 2) Geothermal energy conversion to electricity (power): water vs. CO₂
- 3) Auxiliary heating of geothermally preheated geofluids: water vs. CO₂ (circular production well)
- 4) Summary

Radial model, brine displacement, CO₂-limited heat only

ETH zürich Model

Radius [m]

Reservoir Parameter/Condition	Value
Thickness [m]	50
Average depth, D [m]	2500
Porosity	0.10
Horizontal permeability, $k_{\rm x}[{\rm m}^2]$	5×10 ⁻¹⁴
Vertical permeability, $k_z \ [m^2]$	2.5×10^{-14}
Geothermal gradient[^o C/km]	34
Temperature, T [^o C]	100
Thermal conductivity [W/m/ ^o C]	2.10
Rock specific heat [J/kg/ ^o C]	1000
Rock grain density [kg/m ³]	2650

100,000

Boundary condition	Value	
Top/bottom	No fluid flow, semi-	
	analytic heat exchange	
Lateral	No fluid or heat flow	
Temperature of	46	
Injected fluid [°C]		

Geothermal Energy and Geofluids

CO₂ Saturation before onset of production Geothermal Energy and Geofluids **ETH** zürich

Garapati et al., 2015

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0

CO₂ Saturation for different Reservoir Ts

Geothermal Gradient (Depth: 2.5 km)

>Amount of CO₂ required is \uparrow for locations with \downarrow geothermal gradients.

>As the geothermal gradient \uparrow the CO₂ saturation near the production well \uparrow .

Heat Extraction rates and reservoir lifespan

OUTLINE

- 1) Subsurface energy extraction with CO_2 (combining CCS with geothermal) \rightarrow comparison to water
 - a) 5-spot well system
 - b) circular production well
- 2) Geothermal energy conversion to electricity (power): water vs. CO₂
- 3) Auxiliary heating of geothermally preheated geofluids: water vs. CO₂ (circular production well)
- 4) Summary

Power generation: Ideal trans-critical power cycle

Direct and indirect (binary) power systems

Direct CO₂

Indirect brine

Garapati et al., in prep

CO₂ best suited to remove energy at shallow depths

Darcy Equation:
$$\Delta P = \left[\frac{\mu L}{\rho A}\right] \frac{\dot{m}}{\kappa}$$

Adams et al. (2014, 2015)

CO₂ generates substantially greater flowrates at shallow depths

Adams et al. (2014)

ETH zürich

Power output of a direct CPG system vs. m Per injection-production well pair

Net power output of various geothermal systems vs. depth Per injection-production well pair

Adams et al., Applied Energy, 2015

Net power output of geothermal systems vs. permeability Per injection-production well pair

Adams et al., Applied Energy, 2015

Power requirements and output of various geothermal systems

Expansion of geothermal resource base (e.g. USA)

CPG CO₂ mass flow rates are 4.7 to 5.9 times those of hydrothermal systems CPG heat mining rates are 2.3 to 2.9 times those of hydrothermal systems CPG heat mining rates are 4.3 to 5.7 times those of H_2O -based EGS

Minimum temperature for CO₂-based reservoir geothermal (CPG), 2.5 km depth Minimum temperature for H₂O-based reservoir geothermal, 2.5 km depth

Randolph and Saar, 2011

OUTLINE

- 1) Subsurface energy extraction with CO_2 (combining CCS with geothermal) \rightarrow comparison to water
 - a) 5-spot well system
 - b) circular production well
- 2) Geothermal energy conversion to electricity (power): water vs. CO₂
- 3) Auxiliary heating of geothermally preheated geofluids: water vs. CO₂ (circular production well)
- 4) Summary

Auxiliary heating of geothermally preheated fluids

Garapati et al., in prep

E Hzürich

Auxiliary heating of:

a) direct CPG system

b) indirect brine system

Garapati et al., in prep

OUTLINE

- 1) Subsurface energy extraction with CO_2 (combining CCS with geothermal) \rightarrow comparison to water
 - a) 5-spot well system
 - b) circular production well
- 2) Geothermal energy conversion to electricity (power): water vs. CO₂
- 3) Auxiliary heating of geothermally preheated geofluids: water vs. CO₂ (circular production well)
- 4) Summary

SUMMARY (geothermal power production)

Low- to moderate enthalpy geothermal "resources" are most common worldwide

Geothermal Energy and Geofluids

- For those and/or if permeabilities, k, (i.e., fluid flow rates) are low, unconventional geothermal systems/power plants are required to generate power:
 - EGS: go deep to increase T + requires increasing permeability
 - CO₂-geothermal (with EGS or for sedimentary basins: CPG)
 - \rightarrow use CO₂ as working fluid to enhance efficiency (by a factor of about 2) (lower T and/or k can be used)
 - \rightarrow CPG: Combine with CCS \rightarrow CCUS: geothermal PP with a negative C footprint (but all benefits of and problems with CCS apply)
 - Auxiliary heating of geothermally preheated geofluids (lower T still useful) \rightarrow potentially useful for synthetic fuel production

Thank you!

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

