

aufgrund eines Beschlusses des Deutschen Bundestages

Offshore Wind Energy Chances, Challenges, and Impact

Stefan Emeis stefan.emeis@kit.edu

INSTITUTE OF METEOROLOGY AND CLIMATE RESEARCH, Atmospheric Environmental Research

www.kit.edu

Resources map from the European Wind Atlas

	10 m		25 m		50 m		100 m		200 m	
	m s ⁻¹	Wm^{-2}	$\mathrm{ms^{-1}}$	Wm ⁻²	${\rm ms^{-1}}$	Wm^{-2}	${\rm ms^{-1}}$	Wm^{-2}	${ m ms^{-1}}$	Wm^{-2}
	> 8.0	> 600	> 8.5	> 700	> 9.0	> 800	> 10.0	> 1100	> 11.0	> 1500
5	7.0-8.0	350-600	7.5-8.5	450-700	8.0-9.0	600-800	8.5-10.0	650-1100	9.5-11.0	900-1500
	6.0-7.0	250-300	6.5-7.5	300-450	7.0-8.0	400-600	7.5- 8.5	450- 650	8.0- 9.5	600- 900
	4.5-6.0	100-250	5.0-6.5	150-300	5.5-7.0	200-400	6.0- 7.5	250- 450	6.5- 8.0	300- 600
	< 4.5	< 100	< 5.0	< 150	< 5.5	< 200	< 6.0	< 250	< 6.5	< 300

http://www.wwindea.org/technology/ch02/en/2_2_2.html

Swedish offshore farm Lillgrund (Öresund) 110.4 MW 48 turbines (2.3 MW)

Coastal farm near Rødby (Denmark)

Institute for Meteorology and Climate Research – Atmospheric Environmental Research

Erected and planned offshore wind farms in the North Sea

Erected and planned offshore wind farms in Germany

Source: http://www.bsh.de/de/Meeresnutzung/Wirtschaft/CONTIS-Informationssystem/index.jsp

Erected and planned offshore wind farms in Germany (North Sea)

aufgrund eines Beschlusses des Deutschen Bundestages

Present state of offshore wind farms in the North Sea (SAR satellite image)

Pros and Cons for Offshore Wind Energy

Advantages

Disadvantages

Physical arguments

higher capacity factors (1) higher mean wind speeds (3) less turbulence (= less loads) less vertical wind shear no diurnal stability variations

Technical arguments

not visible to the public lesser hub heights enough space correlation between wind direction and stability (2) higher extreme wind speeds (gusts) (3) longer wakes (due to less turbulence) (4) additional loads due to waves

difficult foundations

bad accessibility for maintenance difficult grid connections aggressive environment (sea salt)

(1) higher capacity factors

Available power (in GW, top) and harvested energy (in TWh, below) in Germany

Institute for Meteorology and Climate Research – Atmospheric Environmental Research

2015: yield offshore 7.89 TWh (10%), yield onshore 71.06 TWh (90%) installed offs.~2.00 GW (5%), installed onshore 38.57 GW (95%)

https://www.energy-charts.de/power_de.htm

Available wind and solar power (in GW) in Germany

offshore wind yield is much more steady

https://www.energy-charts.de/power_de.htm

Institute for Meteorology and Climate Research – Atmospheric Environmental Research

impact of cut-in (blue) and cut-off (red) wind speed

(Data sources: Tennet, DWD)

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

(2) correlation between wind direction and stability

16 09.03.2016 Prof. Dr. Stefan Emeis | Offshore wind energy

Bundesministerium für Wirtschaft und Energie

-0.5

-0.1

0.0

0.1

0.5

alí

ARCHATALPHA VENTUS aufgrund eines Beschlusses des Deutschen Bundestages

Gefördert durch:

Correlation of wind direction and thermal stability in the marine ABL

stabile conditions dominate in the main wind direction

Gefördert durch: Bundesministerium für Wirtschaft und Energie

RESEARCH AT ALPHA VENTUS Eine Earschungeleilighte des Bundesumweltministerums bine Earschungeleilighte des Bundesumweltministerums

ΔVF

adapted farm layout:

Bundesministerium für Wirtschaft und Energie

(3) higher mean and extreme wind speeds

Prof. Dr. Stefan Emeis | Offshore wind energy 19 09.03.2016

Wind Statistics

Extreme value statistics

Fisher-Tippett type 1 (Gumbel) distribution

 $W(x) = \exp(-\exp(-(x-a)/b)) \quad \text{wind speed } x, \text{ constants } a \text{ and } b$ $w(x) = (1/b) \exp(-(x-a)/b) \exp(-\exp(-(x-a)/b))$

 $-\ln(-\ln(W(x)) = (x-a)/b = x/b - a/b$ equation of a straight line with slope 1/b

example:

10 min mean values a 50 yr extreme → 52 560 values per year

→ one in 50*52560 = 2 628 000 values

 $= -\ln(-\ln(1-1/(2628000))) = -\ln(-\ln(0.999999619)) = -\ln(3.8 \cdot 10^{-7}) = 14.78$

Emeis and Türk, 2009: Ocean Dynamics 59, 463–475.

Extreme mean wind speeds

10 min extreme wind speed at FINO1

Extreme gusts

aufgrund eines Beschlusses des Deutschen Bundestages

(4) longer wakes

aufgrund eines Beschlusses des Deutschen Bundestages

Wakes: turbines wakes and park wakes

Horns Rev, 12 February 2008, Photographer Christian Steiness, Vattenfall this turbine was not operating!

aufgrund eines Beschlusses des Deutschen Bundestages

Institute for Meteorology and Climate Research – Atmospheric Environmental Research

aufgrund eines Beschlusses des Deutschen Bundestages

Horns Rev: wake from SAR image

SAR-Bild (TERRA-X) von Horns Rev, 16.2.2012

Prof. Dr. Stefan Emeis | Offshore wind energy

Institute for Meteorology and Climate Research – Atmospheric Environmental Research

10 km

Park Wakes

wind speed reduction: offshore stronger than onshore

(partial) compensation of higher offshore wind speed
 offshore requires a larger distance between turbines

offshore wake length is several times larger than onshore

➔ offshore requires larger distances between wind parks

analytical wake models are strongly simplified

only for rough estimation, exact simulations with numerical models necessary (e.g., WRF)

further research necessary!!!

Newly started research project WIPAFF (WInd PArk Far Fields)

11.2015 – 02.2019

5 Partners: KIT, Institute of Meteorology and Climate Research Technical University of Braunschweig Helmholtz Centre Geesthacht UL International GmbH (ex: DEWI) University of Tübingen

Aircraft (Do 128) observations in the wakes Analysis of satellite SAR data of wakes Mesoscale wind field modelling with WRF (wave model, park parametrisation) Adjustment of analytic and industrial wind park models

assessment of impact on regional climate

Impact on regional climate

cloud formation, modification of precipitation patterns modification of sun shine duration modification of wind fields

Outlook and Innovations

Measurements

In situ versus remote sensing

In situ: masts

remote sensing: platforms and buoys (wind lidar)

http://www.rwe.com/web/cms/de/86182/rwe-innogy/presse-news/pressemitteilung/?pmid=4014556

Neumann, T., K. Nolopp, 2007: DEWI-Magazin 30, http://www.dewi.de/dewi_res/fileadmin/pdf/publications/Magazin_30/08.pdf

Types of Wind Turbines

Future developments:

100 m rotor blades 10 MW

200 m rotor blades 50 MW

Segmented Ultralight Morphing Rotor (SUMR)

segmented rotor blades palm-tree inspired design

(Sandia Nat'l Lab)

Source: https://share.sandia.gov/news/resources/news_releases/big_blades/#.VrNDfE0wcQ8

Types of Wind Turbines

Future developments:

turbines not optimized for maximum yield (left, which is harvested rarely) turbines optimized for uniform yield (right, which can be delivered for long periods)

3 MW, 90 m rotor diameter, 472 W/m² rated power from 12 to 25 m/s

3 MW, 160 m rotor diameter, 150 W/m² rated power from 8 to 25 m/s

Types of foundations

Future developments:

floating foundations

http://www.offshorewindindustry.com/news/swimming-lessons-wind-turbines

Thank You for your attention

www.imk-ifu.kit.edu

KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

