

Grid Connected

Martin Tackenberg, Siemens Energy Management | Regensburg, March 7, 2016

Trends and Innovations in the Energy Sector

© Siemens AG 2016

www.siemens.com

Restricted

Agenda

Fact & Figures SIEMENS

Global Trends

Our Answers

© Siemens AG 2016

Page 2 2016-03-07

Flat and market driven organization along the value chain will capture growth opportunities

© Siemens AG 2016

* Commonwealth of Independent States

Page 3 2016-03-07

Martin Tackenberg / Energy Management

Siemens at a glance in FY14

Martin Tackenberg / Energy Management

Page 4 2016-03-07

Energy Management at a glance We are where our customers are

© Siemens AG 2016

Page 5 2016-03-07

Locations Energy Management
 Martin Tackenberg / Energy Management

The Energy Management Business Units

High Voltage Products Transformers

- Circuit breakers
- Disconnectors and earthing switches
- Hybrid switchgear
- Instrument transformers
- Surge arresters
- Coils
- Bushings
- Gas-insulated switchgears(GIS systems)

- Power transformers
- Distribution transformers
- Special purpose transformers
- Traction transformers
- Phase shifter transformers
- Transformer lifecycle management (TLM^{TM)}
- Transformer components

- High-voltage directcurrent transmission (HVDC)
- Reactive power compensation / FACTS
- Turnkey grid access
- solutions

 Solutions for gas- and
 - air-insulated switchgear (GIS, AIS)
 - Gas-insulated lines (GIL)

Medium Voltage & Systems

- Air- and gas-insulated medium-voltage switchgear
- Low-voltage switchgear and busbar-trunking systems
- Generator switchgear
- Storage & grid coupling
- Power supply solutions,
 E-houses
- Subsea prod. & systems

Low Voltage & Products

- Low-voltage protection, switching, measuring, and monitoring devices
- Low-voltage distribution boards/systems
- Medium-voltage vacuum circuit breakers, contactors, and interrupters

Consulting

Digital Grid

- Grid automation & control centers
- Grid applications
- Communication devices
- Sensors
 - Meter data management
 - Data analytics
 - Software solutions
 - Integration services
 - Asset services

© Siemens AG 2016

Content

Facts & Figures SIEMENS

Global Trends

Our Answers

© Siemens AG 2016

Page 7 2016-03-07

Siemens Vision 2020 – leading position in Electrification, Automation, Digitalization

© Siemens AG 2016

Digitalization changes everything

From record store ...

... to streaming

From bookstore ...

... to e-book

The Exclusive Bio

From taxi ...

... to ride sharing

UUBER

From manual diagnostic based maintenance checks ...

11. 1.0

Eromdantanduaiveliagrandititiva seedinteinateneence checks ...

Will this disruption stop in front of our business markets?

© Siemens AG 2016

Seite 18

From centralized power plants ...

F.romdemetralizizet of & wfeu ethantisng.power generation

Energy Systems are changing fast

Hz

German Energiewende: Complexity is managed with increasing smartness throughout the grid

© Siemens AG 2016

Energiewende 2.0 – Worldwide challenges to the energy systems of the future

© Siemens AG 2016

Page 23 2016-03-07

We are addressing all key elements of energy systems....

The core question of the optimal pathway from source to utilization is Energy at the *right Place*, on the *right Time*, in the *required Form* and *Quality*

© Siemens AG 2016

Page 24 2016-03-07

Expected development of the German Energy Mix (2013 – 2025 – 2035)

B1 2035/B2 2035

Decrease of dispatchable (conventional) Power Generation

B1 2025/B2 2025

© Siemens AG 2016

- Kernenergie
- Braunkohle
- Steinkohle
- Erdgas
- Mineralölprodukte
- Pumpspeicher
- Sonstige

Increase of variable Power Generation (Wind, PV)

B1 2035/B2 2035

- Wind
- Photovoltaik
- BiomasseWasser
- Sonstige EE

Past Production follows consumption **Today** Consumption vs. production **Future** Production decoupled from consumption

- 80% share of renewable energy in 2035+
- 2035+: Installed capacity of renewable energy systems:
 >220 GW
 - Electrical energy produced: 446 TWh
 - Electricity generation is occasionally 2.4 times higher than maximum consumption!
- Excess energy in northern states of Germany
 - More than 7,000 MW for over 3,000 hours per year
- Grid stability is the highest priority

Reducing uncertainties is a major challenge for research and development!

© Siemens AG 2016

Page 26 2016-03-07

Renewable Production in Germany Largely Depending on Seasonal Effects

Page 27 2016-03-07

Martin Tackenberg / Energy Management

Generation mix in 2030: Opportunities, Threats and Uncertainties

Changing generation mix

Source: Siemens

© Siemens AG 2016

Impact on Grid business

- Connections for renewables
- Grid extensions required
- Stability challenges
- Power quality and security
- Automated operation and situational awareness
- New business models, solutions and customers
- New and growing players in the energy market, e.g. Google NEST, Viessmann
- Regulatory uncertainty and public acceptance
- Disruptive potential from cheap storage

Content

Facts & Figures SIEMENS

Global Trends

Our Answers

© Siemens AG 2016

Page 29 2016-03-07

Increasing role of Power Electronics and Digitalization in all voltage levels master the energy transition

	Changing generation mix	 Interconnectors Network Control Systems Synthetic Inertia 	France Largerise Assuration Baixes • reprintent Sta Llogala • France Largerise Assuration Sta Llogala • France Sta Llogala
2	Generation capacity additions	 Transmission Grid Capacity additions Intelligent Distribution Grid Smart Substation 	
3	Distance from source to load	 High Voltage DC Systems (HVDC) Flexible AC Transmission Systems (FACTS) Supergrids 	
4	Decentralization (public / private)	 Active Network Mgmt., Microgrids, Nanogrids Distributed Energy Systems (DES) Energy Storage, Electrolyzers, Power-to-X 	
5	Refurbishment / upgrades	 Equipment with higher voltage ratings Cyber Security Solutions Resilience 	

© Siemens AG 2016

Future challenges for utilities and solution implications

Challenges	Solution	Portfolio
	Situational awareness and forecasting	 Phasor Measurement Unit Advanced Control Center
Variable power generation		
Capacity constraints	Fast reacting grid control, adaptive assets	 Dynamic Grid Control Center Digital substation
Frequency and voltage stability challenges	More interconnector	Adaptive protection HVDC, FACTS
Shorter market time	capacity and grid stabilization	 Controllable Transformer Energy storage
intervals	Market integration of TSO, DSO, generators and retailers	 Virtual Power Plant Dynamic Load Management Central Information Hub

Future challenges for utilities and Siemens portfolio implications

Challenges	Solution	Portfolio
	Situational awareness and forecasting	 Phasor Measurement Unit Advanced Control Center
Variable power generation		
Capacity constraints	Fast reacting grid control, adaptive assets	 Dynamic Grid Control Center Digital substation Adaptive protection
Frequency and voltage stability challenges		HVDC, FACTS
Shorter market time	More interconnector capacity and grid stabilization	 Controllable Transformer Energy storage
intervals	Market integration of TSO, DSO, generators and retailers	 Virtual Power Plant Dynamic Load Management Central Information Hub

© Siemens AG 2016

Ensuring stability and security of the system: Advanced control center for PJM Interconnection

© Siemens AG 2016

Page 33 2016-03-07

Control centers

- Large scale energy management system
- Real time market pricing
- Dual-primary control center

SIEMENS

 Capability to run the grid independently or as a single virtual control center

Benefits

- Increased security and reliability of the grid
- Practically uninterrupted power supply and grid control

Spectrum Power Active Network Management Releasing hidden capacity by Active Network Management

© Siemens AG 2016

Page 34 2016-03-07

Future challenges for utilities and Siemens portfolio implications

Challenges	Solution	Portfolio
	Situational awareness and forecasting	 Phasor Measurement Unit Advanced Control Center
Variable power generation		
Capacity constraints	Fast reacting grid control, adaptive assets	 Dynamic Grid Control Center Digital substation
Frequency and voltage stability challenges	More interconnector	 Adaptive protection HVDC, FACTS
Shorter market time intervals	capacity and grid stabilization	 Controllable Transformer Energy storage
	Market integration of TSO, DSO, generators and retailers	 Virtual Power Plant Dynamic Load Management Central Information Hub

© Siemens AG 2016

Research project Dynamic Grid Control Center

SIEMENS

Challenge:

- Changing system dynamics
- More power electronics within the grid, less rotating mass

Target:

- Autopilot and Master Power Control operation
- Controllable grid dynamics
- Self healing capabilities

Partnering:

- 3 universities
- 4 TSOs
- 2 scientific institutes

© Siemens AG 2016

Page 36 2016-03-07

Future challenges for utilities and Siemens portfolio implications

Challenges	Solution	Portfolio
	Situational awareness and forecasting	 Phasor Measurement Unit Advanced Control Center
Variable power generation		
Capacity constraints	Fast reacting grid control, adaptive assets	 Dynamic Grid Control Center Digital substation
Frequency and voltage		Adaptive protection
stability challenges	More interconnector	 HVDC, FACTS Controllable Transformer
Shorter market time intervals	capacity and grid stabilization	 Energy storage, Power-to-X
	Market integration of TSO, DSO, generators and retailers	 Virtual Power Plant Dynamic Load Management Central Information Hub

Wind offshore and the grid connection – Strong need for innovations

© Siemens AG 2016

Page 38 2016-03-07

Offshore wind power connection: Example BorWin2 in the North Sea to supply 800.000 German households

Integrate 800 MW from 100 km offshore distance with highest efficiency

SIEMENS

© Siemens AG 2016

Page 39 2016-03-07

Offshore wind power connection: Example BorWin2 in the North Sea to supply 800.000 German households

SIEMENS

INTERCONEXIÓN HVDC PLUS, FRANCIA – ESPAÑA, SANTA LLOGAIA D'ALGUEMA. GIRONA falyr.es Tel, 914400918 Nº de Imagen: 070184 Fecha y Hora de Toma: 05/10/2012 - 12:05

Customer	INELFE (Rte and REE)
Project Name	INELFE
Location	Baixas, France to Santa Llogaia, Spain
Power Rating	2 x 1000 MW
Type of Plant	HVDC PLUS 65 km underground cable
Voltage Levels	± 320 kV DC
	400 kV AC, 50 Hz
Semiconductors	IGBT

© Siemens AG 2016

Tary

Page 40 2016-03-07

0

SIEMENS

The innovation: Converter using intelligent control software

© Siemens AG 2016

Page 41 2016-03-07

Area Voltage Control for Voltage Stability Effects of the different Voltage Control Strategies

© Siemens AG 2016

Page 42 2016-03-07

Martin Tackenberg / Energy Management

Voltage Control in low voltage grids: "FITformer REG"

Low-voltage load regulation range in three steps

- With well-proven electromechanical switching devices
- Switching under load

© Siemens AG 2016

Page 43 2016-03-07

Frequency stability

- Frequency behaviour defined based on operational and statutory limits
- Power plants with synchronous generators participate in frequency control
- Two types of mandatory frequency response services
 - Primary (tens of seconds)
 - Secondary (up to minutes)

SVC PLUS Frequency Stabilizer Layout of entire 50 MVA station

Martin Tackenberg / Energy Management

Energy storage facilitates the integration of infrastructures and energy carriers

© Siemens AG 2016

Page 46 2016-03-07

SIEMENS

SIESTORAGE References here: Network Stabilization and Blackstart applications

SIESTORAGE installation as standard container at the grid of <u>ENEL</u>, <u>Italy</u>

for <u>network stabilization</u> with infeed of power from decentralized, renewable sources

Commissioning in 2012 1MVA/500 kWh

SIESTORAGE installation in existing modernized substation of <u>VEO*</u> <u>Eisenhüttenstadt, Germany</u>

for <u>black start</u> in the steel and rolling mill of Arcelor Mittal GmbH (AMEH)

Commissioned in 2014

<u>2,8 MVA /720 kWh</u>

One-stop-shop:

- From planning and installation through to commissioning and services
- Possibility of integration into prefabricated standard container or existing building

* (Vulkan Energiewirtschaft Oderbrücke GmbH)

© Siemens AG 2016

Page 47 2016-03-07

Energiepark Mainz – Project scope and key facts

- Location: Mainz-Hechtsheim (DE)
- 3 high performance electrolysis systems, peak power of 2 MW el. each (6 MW peak)
- Highly dynamic operation over broad load range (ramp speed 10% per sec.)
- First Electrolyzer delivered mid of march
- Plant commissioning scheduled July 2015

© Siemens AG 2016

Page 48 2016-03-07

Future challenges for utilities and Siemens portfolio implications

Challenges	Solution	Portfolio
	Situational awareness and forecasting	 Phasor Measurement Unit Advanced Control Center
Variable power generation		
Capacity constraints	Fast reacting grid control, adaptive assets	 Dynamic Grid Control Center Digital substation
Frequency and voltage stability challenges		 Adaptive protection HVDC, FACTS
Shorter market time	More interconnector capacity and grid stabilization	 Controllable Transformer Energy storage
intervals	Market integration of TSO, DSO, generators and retailers	 Virtual Power Plant Dynamic Load Management Central Information Hub

Virtual Power Plants: RWE, Stadtwerke München and Mark-E

Integration of distributed generation and load flexibility into power markets

Revenue improvement for distributed renewable generation

Improved cost efficiency of mixed generation fleet

2016-03-07

Page 50

Renewables can deliver a solid distributed supply and topological power.

Hybrid power plants expand conventional power plants by integrating renewables – and thus conserving fossil fuels.

Microgrid control systems manage distributed consumers and energy producers – and efficiently improve grid stability

© Siemens AG 2016

Page 51 2016-03-07

Microgrid IREN2 research project in Wildpoldsried, Germany

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Challenge:

Optimize regional use of local renewable generation

Solution:

Combining micro grid and VPP to form a topological power plant, which can be operated in island mode

Benefits:

- Stable and economically optimized grid operation
- Black start capability
- Profitable use of renewable resources independently of the supply grid
- Ancillary services from the distribution grid

© Siemens AG 2016

Page 52 2016-03-07

Siemens – Ingenuity for Life

Thank you! martin.tackenberg@siemens.com

Disclaimer

This document contains forward-looking statements and information – that is, statements related to future, not past, events. These statements may be identified either orally or in writing by words as "expects", "anticipates", "intends", "plans", "believes", "seeks", "estimates", "will" or words of similar meaning. Such statements are based on our current expectations and certain assumptions, and are, therefore, subject to certain risks and uncertainties. A variety of factors, many of which are beyond Siemens' control, affect its operations, performance, business strategy and results and could cause the actual results, performance or achievements of Siemens worldwide to be materially different from any future results, performance or achievements that may be expressed or implied by such forward-looking statements. For us, particular uncertainties arise, among others, from changes in general economic and business conditions, changes in currency exchange rates and interest rates, introduction of competing products or technologies by other companies, lack of acceptance of new products or services by customers targeted by Siemens worldwide, changes in business strategy and various other factors. More detailed information about certain of these factors is contained in Siemens' filings with the SEC, which are available on the Siemens website, <u>www.siemens.com</u> and on the SEC's website, <u>www.sec.qov</u>. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those described in the relevant forward-looking statement as anticipated, believed, estimated, expected, intended, planned or projected. Siemens does not intend or assume any obligation to update or revise these forward-looking statements in light of developments which differ from those anticipated.

Trademarks mentioned in this document are the property of Siemens AG, it's affiliates or their respective owners.

© Siemens AG 2016

Page 55 2016-03-07

Back-Up

© Siemens AG 2016

Page 56 2016-03-07