

DPG Frühjahrstagung Münster

Next Generation Batteries: Hopes and Problems

Arnulf Latz and Timo Danner German Aerospace Center and Helmholtz Institute Ulm Electrochemical Energy Storage

- Founded in Jan. 2011
- New building on University Ulm campus for 80 scientists (now 103+20 at KIT)
- DLR battery modeling activities are integrated into HIU

Karlsruher Institut für Technologie

Universität Ulm

Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg

Deutsches Zentrum für Luft- und Raumfahrt

http://www.hiu-batteries.de/

Li resources / Cost:

~13.000 t/a Li are currently produced for world market of Li ion batteries

TESLA Gigafactory

5.000 t/a Li for car batteries

8.000 t/a Li for PowerWall batteries

Source: http://tesla.com

Estimated 10 more gigafactories are under consideration worldwide

United States Geological Survey 2017

	Mine production		Reserves ⁵	
United States Argentina	2015 W 3,600	2016 W 5,700	38,000 2,000,000	Resources
Australia Brazil Chile	14,100 200 10,500	14,300 200 12,000	48,000 7,500,000	About
China Portugal Zimbabwe World total (rounded)	2,000 200 <u>900</u> ⁶ 31,500	2,000 200 <u>900</u> ⁶ 35,000	3,200,000 60,000 <u>23,000</u> 14,000,000	49.000.000 t

The best performing cathodes are based on Nickel Mangan Cobalt (NMC) materials

Mine production		Reserves ⁷	Resources:	
2015	<u>2016^e</u>		25 000 000	
°760	690	21,000		
6,000	5,100	⁸ 1,000,000	(Congo, Zambia)	
6,900	7,300	270,000		
7,700	7,700	80,000	+	
63,000	66,000	3,400,000	120 000 000	
4,300	4,200	500,000	12010001000	
3,700	3,300	130,000	on the floor of	
3,680	3,300	64,000	Atlantia Indian and	
4,300	3,500	290,000	Allantic, inulari anu	
6,200	6,200	250,000	Pacific Oceans	
3,000	3,000	29,000		
4,600	4,600	270,000		
11,600	8,300	690,000		
126,000	123,000	7,000,000		
	Mine p <u>2015</u> ^e 760 6,000 6,900 7,700 63,000 4,300 3,700 3,680 4,300 6,200 3,000 4,600 <u>11,600</u> 126,000	$\begin{array}{c c} \mbox{Mine production} \\ \hline 2015 & 2016^e \\ \hline e760 & 690 \\ \hline 6,000 & 5,100 \\ \hline 6,900 & 7,300 \\ 7,700 & 7,700 \\ \hline 63,000 & 66,000 \\ 4,300 & 4,200 \\ 3,700 & 3,300 \\ 3,680 & 3,300 \\ 3,680 & 3,300 \\ 4,300 & 3,500 \\ \hline 6,200 & 6,200 \\ 3,000 & 3,000 \\ 4,600 & 4,600 \\ \hline 11,600 & 8,300 \\ 126,000 & 123,000 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Cobalt supply chain:

Byproduct of Ni or Cu mining Co production is falling in 2016 Reserves sufficient to run 80.000.000 electric cars

Co is heavily associated with children labour (Estimated 40000 child miners Amnesty International 2016)

Partly great promises for improving sustainability, cost, safety, energy density

 \rightarrow but no system commercialized, yet, due to novelty and scientific/technical obstacles

Element Charge of	crystal ionic	Earth crustal	Price (pure) ³	specific capacity		Potential vs.	
Liement	ion radii /pm ¹ by wei	by weight ²	US\$ per 100g	mA∙h∙g⁻¹	mA∙h∙cm⁻³	NHE/V	
Li	1	90	20	27	3862	2047	-3.04
Na	1	116	24000 + 10.8 g/L in seawater	25	1166	1130	-2.71
Mg	2	86	23300	3.7	2206	3840	-2.37
Са	2	114	41500	20	1338	2006	-2.87
Zn	2	88	70	5.3	820	6845	-0.76
AI	3	68	82300	15.7	2980	8050	-1.66
СІ	-1	167	145 + 19.4 g/L in seawater	0.15	-		used only as shuttle

¹For coordination number 6, from R. D. Shannon "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides". Acta Crystallogr A. 32 (1976) 751–767.

² David R. Lide, ed., CRC Handbook of Chemistry and Physics, 89th Edition (Internet Version 2009)

³ www.chemicool.com

Theoret. storage capacities of electrochemical couples of Li Ion- and post-Li batteries (materials basis)

2016 8

Properties of Magnesium and Lithium

	Li	Mg
Atomic weight	6.9	24.3
Ionic radius	90 pm	86 pm
Ionic charge	+ 1	+ 2
Reduction potential	- 3.04 V	- 2.37 V
Density	0.53 g/cm ³	1.74 g/cm ³
Gravimetric capacity	3861 mAh/g (Li) 372 mAh/g (LiC₆)	2205 mAh/g
/olumetric capacity	2061 mAh/cm ³	3832 mAh/cm ³

- Mg offers good handling and operational safety.
- **No dendrite formation** with Mg metal as anode \rightarrow major safety issue with Li metal batteries.
- Mg is naturally 1000x more abundant on earth than Li.
- Mg/S offers theoretical 3200 Wh/L compared to theoretical 2800 Wh/L for Li/S
- But: Sulfur cathode needs special electrolyte for Mg!
- Mg anode is easily passivated with most of the known electrolytes

Chemical Reactions

- I. $\operatorname{Zn} + 40 \operatorname{H}^{-} \rightleftharpoons \operatorname{Zn}(0 \operatorname{H})_{4}^{2-} + 2 \operatorname{e}^{-}$
- II. $\operatorname{Zn}(OH)_4^{2-} \rightleftharpoons \operatorname{Zn}O + 2OH^- + H_2O$

III.
$$0_2^g \rightleftharpoons 0_2^e$$

IV.
$$\frac{1}{2}O_2^e + H_2O + 2e^- \rightleftharpoons 2OH^-$$

- Specific energy: 1086 Wh·kg⁻¹
 Energy density: 6090 Wh·l⁻¹
 Low cost and safe
- Challenges include: Zn **dendrites**, electrolyte **carbonation**, Zn **passivation**
- Alternative electrolytes needed (ionic liquids, neutral electrolytes)

Na-Ion Batteries

Na-ion cell with hard carbon anode made of apple biowaste

L. Wu et al., ChemElectroChem (2015) doi: 10.1002/celc.201500437

http://www.swr.de, Landesschau aktuell: "Forschung am Ulmer Helmholtz-Institut: Batterien aus Apfelresten"

Example: Metal-sulfur battery (Cobalt free)

Global reaction: $S_8 + 16$ Li \rightleftharpoons 8 Li₂S + 3400 kJ/mol

Complex chemistry, complex multi-phase behavior, Redox shuttle

Simplified model: 2 reduction steps

Base model (without degradation)

- S/C composite electrode
- Variation of current amplitude (C-rate)
 - Influence on
 - Transport
 - Kinetics
- Variation of sulfur content
 - Increase in capacity
 - No pore clogging included

→

Validated with experiments of Canas et. al (2014) at the DLR in Stuttgart

Loss mechanism: Shuttle effect

- Partial reduction of dissolved polysulfides at negative electrode during charge
- Precipitation of Li_2S
- → Columbic efficiency \downarrow
 - Capacity decay

Busche, Martin Rolf, et al. *Journal of Power Sources* 259 (2014): 289-299.

Infinite charging at small currents

Capacity decay during cycling

Different approaches to retain sulfur species...

Goal: Investigation of fundamental limiting effects

Single particle model

• Model 1

Lithium ion

Electrons

Solid carbon shell

Sulfur

Electrons

• Model 2

➔Microporous sphere

Helmboltz Institute Ulm Electrochemical Energy Storage

Structural effects

- Nucleation of S₈ / Li₂S
 - Pore space is reduced
 - Li₂S needs much more volume
- Effective transport + pore clogging
 - Hindered diffusion in porous media
 - $D_i^{eff} = D_i^0 \varepsilon_{elyte}^{1.5}$
- Passivation of active surface area by S_8 / Li_2S
 - Solid reaction products are electronically nonconducting

Transport overpotential

• Li+ transport into particle

$$\dot{N}_{Li^+}\big|_{r=R_p} = -D_{\mathrm{Li}^+}^{eff} \frac{\partial c_{\mathrm{Li}^+}}{\partial r}\Big|_{r=R_p} - D_{\mathrm{Li}^+}^{eff} c_{\mathrm{Li}^+} \frac{z_{\mathrm{Li}^+F}}{RT} \frac{\partial \phi_{elyte}}{\partial r}\Big|_{r=R_p}$$

• Transport against gradient in $c_{\rm Li^+}$

→Additional transport resistance

➔ Additional driving force for polysulfide loss

Cycling & degradation

Loss of S²⁻

→Capacity fade

Influence of Li₂S solubility

→Low solubility = long cycle life

➔ Suitable choice of electrolyte system

Encapsulation is good idea, but creates additional problems

Summary

- In the long run alternatives for Li ion batteries are necessary
- There are many theoretical alternatives for Li ion batteries
- Each alternative, so far, I plagued with many problems
- Working cells do exist only on Lab scale
- Counter measures for existing problems very often create additional (interesting) research problems
- Theory and simulation helps to improve the understanding of the nonlinear interplay of transport and reactions

Thank you for your attention!

Opportunity

PhD positions available http://www.hiu-batteries.de Arnulf.Latz@dlr.de

Continuum modeling of Li-S batteries