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Recent International Intitiatives 

COP 21 and 22 in 2015 and 2016 

- COP 21 achieved a legally binding 
and universal agreement on 
climate change  

- Limit the world’s rise in average 
temperature to “well below” 2 °C  

- Dynamic commitments which are 
reviewed 

- Ratified by more than 120 
countries 
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Hydrogen Council 2017 in Davos 

- Thirteen leading energy, transport 
and industry companies have today 
launched a global initiative for 
hydrogen to foster the energy 
transition. 

- Investments currently amount to an 
estimated total value of 
€1.4 Bn/year 

http://unfccc.int/resource/docs/2015/cop21/eng/l09.pdf
http://unfccc.int/resource/docs/2015/cop21/eng/l09.pdf


Importance of Fuel Cells and Hydrogen 
Technology 

Transportation / mobility  
- Fuel cell vehicles (FCV)  
- Range extender  

 
Energy / stationary application 
- Residential power (micro-CHP) 
- Distributed flexible power plants 
Hydrogen: 
- Long-term storage (power to gas)  
- Use in chemical industry 
- Synthetic fuels  
- Load management 
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Toyota Mirai 



How Does a Fuel Cell Work? 
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Example: Proton Exchange 
Membrane Fuel Cell (PEMFC) 
• Electrolyte: polymer membrane 

• Charge carriers: H+  ions 

• H+ ions react at cathode to 

water 

• Reaction anode:  

 H2 
 ->  2H+ + 2e- 

• Reaction cathode:  

 ½O2 + 2H+ + 2e-  -> H2O 

• Temperature: 60 - 80°C 

chemical energy electrical energy 



Components of Polymer Electrolyte Fuel Cells  
 

  

6 nm 

25 nm  

40 w% Pt/C 
Nafion 112 

GDL Toray paper 
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Comparison of Battery and Fuel Cell Vehicles 

+ Locally emission-free 
+ Highest efficiency 
+ Standardized e-fuel 
+ Private charging infrastructure 
+ Model choice improving 
 
 
- High cost  
- Public charging infrastructure 
- Charging currently time consuming 
- Driving range 
- CO2 reduction dependent on % RE  
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+ Locally emission-free 
+ high efficiency  
+ Charging / fueling  ≅  3 min. 
+ Driving range > 400 km 
+ Fast CO2 reduction possible 
+ Simplified heat management 
 
- High cost  
- Missing H2 fueling infrastructure 
- Reliability 
- No model choices 
 

 

Battery Vehicle Fuel Cell Vehicle 



Efficiencies 
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Typical car efficiency (Tank to Wheel): 
- Internal combustion engine:   20 – 25 % 

 
 
 

- Fuel cell electrical drive:    40 – 50 % 
 

 
 

- Battery electrical drive:    70 – 80 % 

fuel heat movement electricity 

fuel  electricity 

O 
H 

H 

chemical  
energy electricity electricity 

Secondary battery 



Efficiency Comparison of Automotive Power Trains   
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Based on Well-to-Wheel studies of European and Japanese Sources: Concawe, EUCAR, JRC und JHFC 

Gasoline 
Diesel 

Hybrid (gasoline) 
Hybrid (Diesel) 

Fuel Cell Powertrain 
with 100% H2 from natural gas 

Battery drive 
with power from 100% EU  grid 

Fuel Cell Powertrain 
from 100% renewable H2 

Battery Powertrain 
from 100% renewable power 

Technology  
Change 

 Gasoline Japan (JHFC) 

 Diesel Japan (JHFC) 

 Hybride Gasoline Japan 

 Fuel Cell Japan (nowadays  
    and future) 

 Battery Japan (Power Mix) 



Status of Electromobility (I) 
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More than 1 Mio battery electric vehicles About 90% of drivers in 
germany travel less than 
100 km per day 

Source: Global EV Outlook 2016 



Status of Electromobility (II) 
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Few thousands of fuel cell vehicles – no 
degression of cost by mass fabrication 
yet 

2017 FCV models: 

FCX Honda Clarity 

Mercedes GLC f-cell 

Plug-in hybrid SUV 
9 kWh Li-ion battery (50 km) 
4 kg H2 @ 700 bar (500 km) 
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Development Success 

Gemini PEFC Stack 

Nissan PEFC Stack 
(2012) 

Pt loading (mg/cm2): 1960s  ca. 11 

 1990s ca. 1 - 3  
 2000s   ca. 0.4 - 0.6 
 2016     ca. 0.2 - 0.3 



Advantages of Fuel Cell Vehicles 
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Driving range acceptable for 
countries with wide infrastructure 
gaps (e.g. Argentina, Brazil …)  

Congestion in tropical megacities 
(Shanghai, Mexico… ) with air 
conditioning requirements  

Gas infrastructure is demonstrated 
(LNG in Argentina) 



Infrastructure for Fuel Cell Vehicles 

- Investments for H2 Infrastructure until 2030 accumulate to 10 - 21 bill. Euro 
in a moderate scenario (7 Mio. fuel cell vehicles)*  

- Comparative values:  
- Road infrastructure in Germany in 2005: 5 bill. Euro 
- EEG  (RE) compensation 2013: 8.5 bill. Euro Photovoltaics 
                             20.38 bill. Euro total  
- Income toll system in Germany 2015: 3 bill. Euro 
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Plug-in Cars: 
Public charging station:     ca. 12 vehicles       cost: ca. 8000 € 
 
H2 fueling station:    ca. 2000 – 2500 vehicles,  cost: ca. 1 Mio € 
 
 Cost for 1 Mio vehicles Battery:     0.67 billion € 
                                       Fuel cells: 0.5 billion € 

*GermanHy 2009,  Joest et al. 
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Importance of Pt Expenditure for Automotive PEMFCS 

- High-cost of precious-metal catalyst, Pt (~35 € / g) contributes  
significantly of the total system cost* 

- 3-5 times higher PGM content compared to ICE 

- South Africa is the top producer of platinum, with an almost 77% share, 
followed by Russia at 13% (40 years reserves at the present rate) 

- Platinum is considered a bottleneck towards the widespread diffusion of 
this technology 

- Pt loading for commercial automotive MEA in present  demonstration cars 
is around 0.45 mg/cm² leading to roughly 0.5 g/kW   

* E.J. Carlson, P. Kopf, J. Sinha, S. Sriramulu, and Y. Yang Cost Analysis of PEM Fuel Cell 
Systems for Transportation December 2005, TIAX LLC 



Electric powertrains can become cost competitive with 
ICE over the next decades 

1 Delta between FCEV TCO and ICE gasoline TCO calculated in EUR/month/vehicle 
SOURCE: Clean team sanitized data, coalition workshops, Working team analysis 

Exlanation TCO: 
• TCO: purchase price + operation costs 
• Purchase price: component costs (66%), asembly costs (13%), SG&A (14%), profit (7%)  
• Operation costs: maintainance, fuel costs and infrastructure costs 
• Duration: 15 years; 12.000 km per year (180.000km overall) 
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Assumption: Dramatic Fuel Cell System Cost 
Reduction (90 %!) with efficient Pt use 
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SOURCE: Coalition Study 
The role of Battery Electric 
Vehicles, Plug-in Hybrids 
and Fuel Cell Electric 
Vehicles 2010 
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Reduction of stack cost 
 Reduction of manufacturing cost at increased durability in order to compete 

with conventional technologies 
 

 

Strategy 
 

R&D for Materials, Components, 
Systems→ cost reduction, 
increased durability of FC-

systems 

Challenge 
 

Performance 

Cost 

Durability Trilemma 

 

 Most promising regarding cost reduction:  
catalyst layer (45 % of stack cost) 

• Low loadings 
• Alternative catalysts 

 

[U.S. DOE 2015 Annual Merit Review] 
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Reduction of Pt content  
EU (Impact project) 

0.25 mgPt/cm2 

~0.60 mgPt/cm2 

Performance improvement at low loadings: 
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Durability improvement (1 A/cm2): 

o Reduced durability at reduced Pt- loading 
 
 

Commercial MEA  
0.6mgPt/cm2 

Target 

Test in Progress 

Reduction of Pt content:  
Durability EU (Impact project) 
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Determination of Degradation Rates 
 Problem: No common procedure to determine degradation rates 

• j = 1 A/cm2  

• Refresh interruptions 

Determination between reversible and irreversible degradation 
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Determination of Degradation Rates 

Test block 

Operation period 

Recovery procedure 
0.00 A/cm2 

0.05 A/cm2 

0.26 A/cm2 

0.59 A/cm2 

0.84 A/cm2 

1.00 A/cm2 

20 min 

Single FC-DLC cycle 

Durability test:  
 Sequence of test blocks consisting of an operation and a 

recovery period 

FC dynamic load cycle (FC-DLC) according to FCH-JU 
StackTest Project  
 Pseudo I-V curve after each cycle 
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0.00 A/cm2 

0.05 A/cm2 

0.26 A/cm2 

0.59 A/cm2 

0.84 A/cm2 

1.00 A/cm2 

FC-DLC cycles 

FC dynamic load cycle (FC-DLC) according to FCH-JU 
StackTest Project  
 Pseudo I-V curve after each cycle 
  
  
 

Determination of Degradation Rates 
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Degradation and Performance vs. Pt-loading 

Pt-loadings at anode/cathode in mgPt/cm2 

    

DLR Rainbow-Stack 

2nd set 1st set 
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Degradation and Performance Vs Pt-loading 

• Irreversible degradation increases with decreasing cathode ECSA (BoL)  
 

• Slightly increased ECSA loss observed for high degradation rates 
 

• No correlation observed for anode ECSA loss 



Fuel Cells with Batteries: Concept of Power Boost 
by Hybridization  
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Modeling of fuel cell and battery hybrid: voltage and power 
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Load/ 
Source 

Fuel cell + Li battery direct hybrid 



Emission-free Aircraft 
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- Zero emission passenger flight with fuel cells  

- HY4 combines high efficient power generation 
by fuel cell - battery hybrid with efficient drive 
train and economic fuselage.  

- Air transport of up to 4 passengers with less 
than 350 g H2 per 100 km at cruising speed of 
160-200 km/h. 

- Basis for future improvements regarding 
reliability, endurance and peak altitude. 

- Future commercial emission-free passenger 
aircraft for up to 40-60 passengers seems 
possible with advanced fuel cell technology 

H2FLY 
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Stationary Application: Residential Application in 
Japan 
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Stationary Application: Residential Application in 
Japan 
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Residential Systems in Germany 
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• Technology introduction program (TEP) for stationary residental fuel 
cells in place in Germany 

• Goal: Increase the number of installation up to 75 000 until 2023 

Manufacturer Micro-CHP 
brand 
name 

Electrical 
power 
[kW] 

Thermal 
power 
[kW] 

Electrical 
efficiency 

[%] 

Total 
efficiency 

[%] 

Technology 

Buderus Logapower 
FC10 

0.7 0.62 45 85 SOFC 

Elcore Elcore 2400 0.3 0.7 32 104 HT PEMFC 
Hexis Galileo 

1000 N 
1.0 1.8 35 95 SOFC 

Junkers CeraPower 
FC 

0.7 0.62 45 85 SOFC 

RBZ Inhouse 
5000+ 

5.0 7.5 34 92 PEMFC 

SenerTec Dachs 
InnoGen 

0.7 0.96 37 93 PEMFC 

SOLIDpower BlueGEN 1.5 0.61 60 85 SOFC 
Engen-2500 2.5 2.0 50 90 SOFC 

Viessmann Vitovalor 
300-P 

0.75 1.0 37 90 PEMFC 

 



Conclusions 

- Fuel Cell and Batteries are important technologies for our future energy 
system 

- Fuel Cells can help to overcome some of batteries present and future 
limitations 

- Transport and stationary power can profit from hybrid system 
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