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Recent International Intitiatives

COP 21 and 22 in 2015 and 2016 Hydrogen Council 2017 in Davos

- COP 21 achieved a legally binding - Thirteen leading energy, transport
and universal agreement on and industry companies have today
climate change launched a global initiative for

- Limit the world’s rise in average hydrogen to foster the energy
temperature to “well below” 2° C transition.
reviewed estimated total value of

€1.4 Bn/year

- Ratified by more than 120
@airtiquide ALSTOM (B Angloamerican E'é{'é"{,p

countries

DAIMLER ENGie HONDA & HYUNDAI

Kawasakl @ THEL!nDEGROUP OTOTA'- TOYOTA
y a " w y
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Importance of Fuel Cells and Hydrogen
Technology

Toyota Mirai

Transportation / mobility
- Fuel cell vehicles (FCV)
- Range extender

Energy / stationary application

- Residential power (micro-CHP)

- Distributed flexible power plants
Hydrogen:

- Long-term storage (power to gas)
- Use in chemical industry

- Synthetic fuels

- Load management
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How Does a Fuel Cell Work?

chemical energy E ¥ celectrical energy

ELECTRIC CIRCUIT
{40% — 60% Efficien r,:.-':l

| ®8e— 0, (Oxygen) from Air

Heat (857C)
Water ar Air Cooled

Flenw Field Plate Flowr Field Plate
Cas Diffusion Electrode (Anode) Gas Diffusion Electrode (Cathode)

Catalyst —_— Canalyst
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Example: Proton Exchange
Membrane Fuel Cell (PEMFC)

» Electrolyte: polymer membrane
e Charge carriers: H* ions
 H*ions react at cathode to
water
* Reaction anode:
H, -> 2H* + 2e-
e Reaction cathode:
Y20, + 2H" + 2e” -> H,0
e Temperature: 60 - 80° C
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Components of Polymer Electrolyte Fuel Cells

40 w% Pt/C
Nafion 112

Membrane
Electrode

Gas Diffusion Layer
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Comparison of Battery and Fuel Cell Vehicles

Battery Vehicle Fuel Cell Vehicle

+ Locally emission-free + Locally emission-free

+ Highest efficiency + high efficiency

+ Standardized e-fuel + Charging / fueling = 3 min.
+ Private charging infrastructure + Driving range > 400 km

+ Model choice improving + Fast CO, reduction possible

+ Simplified heat management

- High cost - High cost
- Public charging infrastructure - Missing H, fueling infrastructure
- Charging currently time consuming - Reliability

No model choices

- Driving range
- CO, reduction dependent on % RE

i DLR
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Efficiencies

Typical car efficiency (Tank to Wheel):
- Internal combustion engine: 20 — 25 %

N //

[ fuel J heat j‘ movemen -[electrlmtyJ

- Battery electric gl drive: 70 —80 %

\\/

Q Secondary battery ~ —
;/ \i M//Q :
= chemical -
[electru:lty] ‘[ eneray j‘(electrlmtyj

o m
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Eff|C|ency Comparrson of Automotrve Power Trains
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Status of Electromobility (1)

More than 1 Mio battery electric vehicles About 90% of drivers in
germany travel less than
100 km per day

Figure 1 e Evolution of the global electric car stock, 2010-15
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- [ United Kingdon
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I Netherlands
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"~ W China

I United States

—BEV
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1200

600

Electric car stock (thousands)

200

0
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Note: the EV stock shown here is primarily estimated on the basis of cumulative sales since 2005.

i DLR

@7 %, International e N €l
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Status of Electromobility (1l)

Few thousands of fuel cell vehicles — no 2017 FCV models:
degression of cost by mass fabrication

yet FCX Honda Clarity

<2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

@D -
Rl h Tucson FCEV (N ix35 fuel cell
& T ‘ o
N'W, — 3 ”
rovora ‘mmfieg MCHV-adv ﬁ irai

%) R
Al - FCX Clarit
S s ity
@
% 403 &, F-Cell B-Klasse
= R
D Ty oot

Qe Gy XTrail FCHY

@ & Hydrogen7 ‘ 5erGT
@ & Tiguan HyMotion el ‘Gu\nyMollon
.77 h) - - | == A
ﬁg % 05 FCEV ey =3 A7 h-tron Qsh-tron
m ﬁ HydrogenGen 4 2

Abbildung 2: Zeitleiste der Markteinfuhrung von FCEVs wesentlicher Automobilhersteller

Plug-in hybrid SUV

#7 /4 9 KWh Li-ion battery (50 km)
DLR | 4 kg H, @ 700 bar (500 km)
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Development Success
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Advantages of Fuel Cell Vehicles

Driving range acceptable for Congestion in tropical megacities
countries with wide infrastructure (Shanghai, Mexico... ) with air

gaps (e.g. Argentina, Brazil ...) conditioning requirements

:::::

Gas infrastructure is demonstrated
(LNG in Argentina)

i DLR
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Infrastructure for Fuel Cell Vehicles

Plug-in Cars:
Public charging station: ca. 12 vehicles cost: ca. 8000 €

H, fueling station: ca. 2000 — 2500 vehicles, cost: ca. 1 Mio €

Cost for 1 Mio vehicles Battery:  0.67 billion €
Fuel cells: 0.5 billion €
- Investments for H, Infrastructure until 2030 accumulate to 10 - 21 bill. Euro
iIn @ moderate scenario (7 Mio. fuel cell vehicles)*
- Comparative values:
- Road infrastructure in Germany in 2005: 5 bill. Euro
- EEG (RE) compensation 2013: 8.5 bill. Euro Photovoltaics
20.38 bill. Euro total
- Income toll system in Germany 2015: 3 bill. Euro

ﬁ [gﬂL *GermanHy 2009, Joest et al.
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Importance of Pt Expenditure for Automotive PEMFCS

- High-cost of precious-metal catalyst, Pt (~35 € / g) contributes
significantly of the total system cost*

- 3-5 times higher PGM content compared to ICE

- South Africa is the top producer of platinum, with an almost 77% share,
followed by Russia at 13% (40 years reserves at the present rate)

- Platinum is considered a bottleneck towards the widespread diffusion of
this technology

- Pt loading for commercial automotive MEA in present demonstration cars
Is around 0.45 mg/cm? leading to roughly 0.5 g/kW

* E.J. Carlson, P. Kopf, J. Sinha, S. Sriramulu, and Y. Yang Cost Analysis of PEM Fuel Cell
Systems for Transportation December 2005, TIAX LLC




Electric powertrains can become cost competitive with
ICE over the next decades

25% FCEV WORLD

C/D SEGMENT (C-Class)

0.30 4 M Fcev M Bev M pHEV M ICE - gasoline [ ICE - diesel

025 | 024 59 0.20 0.19
0.20 |

0.15 f
0.10 f
0.05 f

0.0

TCO Deltal
EUR/month

2020

» TCO: purchase price + operation costs
» Purchase price: component costs (66%), asembly costs (13%), SG&A (14%), profit (7%)
» Operation costs: maintainance, fuel costs and infrastructure costs

» Duration: 15 years; 12.000 km per year (180.000km overall
1 Delta between FCEV TCO and ICE gasoline TCO calculated in EUR/month/vehicle

SOURCE: Clean team sanitized data, coalition workshops, Working team analzsis 7 J .
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Assumption: Dramatic Fuel Cell System Cost
Reduction (90 %!) with efficient Pt use

By 2020, the cost of a fuel cell system falls by 90%, BEV components by 80%

EUR per fuel cell system

C/D SEGMENT

81,362
MEA (excl. catalyst '-. SOURCE: Coalition Study
incl. GDLs) ' IS The role of Battery Electric
Catalyst i Vehicles, Plug-in Hybrids
(incl. platinum) b2 H and Fuel Cell Electric
22,228 |\ Vehicles 2010
Structure | _—T
- / :".I:-,:‘-_ ~90%
Periphery 38.565 v —
1 \ {
[£3.21270 7,475
SE——= 4,306
9516 | - v
2010 2015 2020 2050

FC stack lifetime

‘000 km

Platinum use

a/kW

@ Fuel cell stack cost
EUR/KW

Min
Max

SOURCE: Study analysis
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Reduction of stack cost

» Reduction of manufacturing cost at increased durability in order to compete
with conventional technologies

Balance
of Stack

Bipolar Plates

Membranes

Catalyst and Application

Durability Performance

* Platinum
Group Metals

[U.S. DOE 2015 Annual Merit Review]

Strategy
> M romising regardin r ion:
OS}[ P OI SINg e(;qa ? 9 CESt eductio R&D for Materials, Components,
catalyst ayer_(45 ¥ of stack cost) Systems— cost reduction,
 Low loadings increased durability of FC-

« Alternative catalysts systems

i DLR
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Reduction of Pt content D A
EU (Impact project)

Performance improvement at low loadings:
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Reduction of Pt content:
Durability EU (Impact project)

Durability improvement (1 A/cm?):

Commercial MEA 1000

TC T T T T .
0.6mgp,/cm? > 800 Total degradation@BoT 1 Test IN Progress
= ! I /
.0 i i
) o
g 40 &
© 200 i
% :
()] 0- T
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T T T T T
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-~ # — 4mm Target

I
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0 Reduced durability at reduced Pt- loading
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FCH
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7
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Determination of Degradation Rates

S
‘@«3\\

Problem: No common procedure to determine degradation rates

Determination between reversible and irreversible degradation

80°C (50%RH)
] j=1Alm?
550 *anode = 15 Acath, = 2
1 p=1.5bar
> ]
E 500-
N _
o
E
S |
> 450
= _
(-) -
400 e j=1Alcm?
- * Refresh interruptions
350 +-

0 100 200 300 400 500 600 700 800 900 1000 1100

Operation Time / h
i DLR i
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Determination of Degradation Rates B 4 *
FC dynamic load cycle (FC-DLC) according to FCH-JU |
StackTest Project AR TEST
= Pseudo |-V curve after each cycle

Test block 14
Operation period \ \ 124¢ 20 min >
1.0 I 1.0 - - = 1.00 A/cm?
\’ E;l | Single FC-DLC cycle
! 05 - - 0.84 Alcm?
o~ ./1 \'\ NE '
£ N T g
o I 0.6 - - = 2
< 05- ! | = _ 0.59 Alcm
: 0.4 -
] - — 0.26 A/lcm?
0.2 1
0.0 : ]
. - — = 0.05 A/lcm?
Test Duration 0.0- | ! . TN em
17:25 17:30 17:35 1740 S
S 0.00 A/cm?

Recovery procedure B

Durability test:
» Sequence of test blocks consisting of an operation and a

recovery period
i DLR
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FCH
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Determination of Degradation Rates
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FC dynamic load cycle (FC-DLC) according to FCH-JU
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Degradation and Performance vs. Pt-loading

DLR Rainbow-Stack

Pt-loadings at anode/cathode in mgp,/cm?
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Degradation and Performance Vs Pt-loading
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Fuel Cells with Batteries: Concept of Power Boost
by Hybridization

Fuel cell + Li battery direct hybrid

Load/
Source
Modeling of fuel cell and battery hybrid: voltage and power .
290 or 1330
— fuel cell = hybrid @ SOC=80%
——— battery SOC=80% hybrid @ SOC=50% 1320
280 — hattery SOC=50% = hybrid @ SOC=20%
battery SOC=20% 60 H == fuel cell 1a10
270+ 300
O e d 290
260 -
-1280
250 ; ol Lo
<« hybrid power :
240 c 260 °
o 30F 250 °
230+ Q
; 1240
I O, |
220 D_ 20 230
4220
210
10 hybrid voltage — 210
200+ -200
190 I | ; ' ' : : 00 26 4|0 slu a‘o 1(;[) 150 11‘10 1éo 18690

0 20 40 60 80 100 120 140 160 180

Currentin A -> Currentin A ->

Voltage in V
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Emission-free Aircraft

Zero emission passenger flight with fuel cells

HY4 combines high efficient power generation
by fuel cell - battery hybrid with efficient drive
train and economic fuselage.

Air transport of up to 4 passengers with less
than 350 g H, per 100 km at cruising speed of
160-200 km/h.

Basis for future improvements regarding
reliability, endurance and peak altitude.

Future commercial emission-free passenger
aircraft for up to 40-60 passengers seems
possible with advanced fuel cell technology

janced Hydrogen Solutions Flughof

@:%} - u U|m HYD;Rog(?)NICS e(S‘ruﬁgar’r HZFL y %
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Stationary Application: Residential Application in

Japan

Toshiba Panasonic Aisin Seiki
Model
Output 700 W (PEM) 700 W (PEM) 700 W (SOFC)
Size (mm) W780 x D300 x H1000 | H1750 x W400 x D400 | W780 x D330x H1195
Weight 86 kg 88 kg 100 kg
Electrical o o 0
EH 39 % 39 % 52 % @700W
AT L 200L 140L 28 Litters
Capacity
izl i ¥ 1,630,000 ¥ 1,600,000 - ¥ 1,785,000
LofeiEs (excl. installation) (excl. installation) (excl. installation)
(excl. tax (8%)) ’ ' '

2 Source: Tokvo Gas. Osaka Gas _
DLR ’
y 4 ¥
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Stationary Application: Residential Application in

Japan
® Accumulated volume: more than 150,000 units, achieved within 7

years.

180,000

154,045 Total
160,000
11,208

140,000 hl
@ 115,299
‘T 120,000 |
— 8,643
< 100,000 —
L]
%
£ 80,000 71,805 —
S 5,588 142,837
T 60,000 —
5 106,656
: 40,000 37,525 —
@ 16 257 21897 66,217

20,000 32434 678 ___ mSOFC
18 958 ! PEMFC
0 2550 99 =TT .
2009 2010 2011 2012 2013 2014 2015
Fiscal Year

Source: Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industr
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Residential Systems in Germany

» Technology introduction program (TEP) for stationary residental fuel
cells in place in Germany
» Goal: Increase the number of installation up to 75 000 until 2023

Manufacturer Micro-CHP Electrical Thermal Electrical Total Technology
brand power power efficiency efficiency
name [kW] [kW] [%] [%]
Buderus Logapower 0.7 0.62 45 85 SOFC
FC10
Elcore Elcore 2400 0.3 0.7 32 104 HT PEMFC
Hexis Galileo 1.0 1.8 35 95 SOFC
1000 N
Junkers CeraPower 0.7 0.62 45 85 SOFC
FC
RBZ Inhouse 5.0 7.5 34 92 PEMFC
5000+
SenerTec Dachs 0.7 0.96 37 93 PEMFC
InnoGen
SOLIDpower BlueGEN 1.5 0.61 60 85 SOFC
Engen-2500 2.5 2.0 50 90 SOFC
Viessmann Vitovalor 0.75 1.0 37 90 PEMFC
300-P

i DLR
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Conclusions

- Fuel Cell and Batteries are important technologies for our future energy
system

- Fuel Cells can help to overcome some of batteries present and future
limitations

- Transport and stationary power can profit from hybrid system

THANK YOU FOR YOUR ATTENTION !

The research leading to these results has received funding from the European Union’s Seventh
Framework Programme (FP7/2007-2013) for Fuel Cell and Hydrogen Joint Technology Initiative
under Grant n° 303452 (Impact).
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