Contributions of Wind Physics on further Development of Wind Power

Martin Kühn, Joachim Peinke, Detlev Heinemann

ForWind – Center for Wind Energy Research

Institute of Physics, Carl von Ossietzky Universität Oldenburg

DPG Spring Meeting

28 March 2017, Münster

Content

- Research program on wind physics
 - Multi-scale problems
 - Simulations laboratory tests open field experiments
- Small-scale turbulence
- Wind farm flow and wind farm control
- Mesoscale modelling and wind power forecasting
- Conclusions

Wind physics: Complex interaction of wind energy systems and environment

Challenge

Consistent modelling along many scales (spatial & temporal)

HPC – High Performance Computing 13.000+ Prozessoren, 457 TFlop/s, Rank 363 of 500

WindLab: Research Laboratory for Turbulence and Wind Energy Systems

New WindLab facility (2016)

- up to 140 researchers & students
- physicists, meteorologists, engineers

Main infrastructure

- turbulent wind tunnel $3 \times 3 \times 30 \text{ m}^3$
- active grid for reproduction of realistic turbulence

Open field experiments: Doppler Wind Lidar (Light detecting and ranging)

• Velocity information via Doppler shift

- Problem: frequency $f_L \sim 10^{15}$ Hz (PHz)
 - superposition with reference light
 - measuring the beat frequency ($f_D \sim MHz$)
 - \odot line of sight wind velocity (u_{los})

wind

Multi-scale description of wind resource

SMALL-SCALE TURBULENCE

Wind measurements and data analysis

- Characterization according to IEC 61400
 - $_{\odot}$ 10 min mean value
 - $\ensuremath{\circ}$ turbulence intensity

Wind measurements and data analysis

 $\ensuremath{\circ}$ turbulence intensity

Statistics of gusts

• wind fluctuations can be measured by velocity increments

$$u_{\tau} = u(t+\tau) - u(t)$$

Boundary-Layer Meteorology **108** (2003)

Statistics of gusts

Boundary-Layer Meteorology 108 (2003)

Stochastic modelling of wind turbine power curve

Reproducing measured wind speed series in the wind tunnel with the active grid

- - reproduction of wind time series measured by lidar

[Abb.: N. Reinke, AG TWIST, ForWInd-OL]

Forschungsverbund

Windenergie

active grid in the wind tunnel

Generation of wind fields with an active grid

Reproducing realistic atmospheric inflow conditions in the wind tunnel

WIND FARM FLOW AND WIND FARM CONTROL

Effect of thermal stratification on wind farm flow

Lidar WindScanners

Effect of large scale atmospheric structures on wind farm flow measured by long-range WindScanner

Offshore site »alpha ventus«

- horizontal scans of wake meandering
- wake sweeping generates high loads

Wind farm flow control

Basic concept

- maximising power output of the system rather than greedy control of individual turbines
- wake deflection by yawing upstream turbine out of wind direction

Wind farm flow control: Wind tunnel experiment

0° yaw (full wake)

Wind farm flow control: Large eddy simulations

Effect of thermal stratification on wake deployment and deflection No yaw misalignment Yaw misalignment -30°

Stable

- low turbulence => persistent wake
- directional distortion due to wind veer
- strong deflection due to yawing

Neutral

- little wake distortion
- less wake deflection

Convective

- fast recovery of wake deficit
- wide, elliptical wake deficit
- hardly any wake deflection

(Large eddy simulations, wake deficit at 5 diameters downstream)

Full field wake deflection experiments at 3.5 MW turbine (114 m diameter)

Full field wake deflection experiments

Non-synchronzied horizontal and vertical lidar scans of the wake

Full field wake deflection experiments

Parametrization of dynamic wake meandering model

MESOSCALE MODELLING

Probabilistic wind power forecasting

- Initial value problem
- Imperfect physical modelling
- Weather forecast never flawless
- Need for probabilistic forecasts

Ensemble forecast

Wind speed and wind power at extreme events

Teaching concept on wind physics from BA & MA to PhD and further education

Conclusions

Multi-scale wind physics research program

- characterizing the wind resource
- interaction of wind & turbulence with wind energy systems
- mitigation of turbulence effects by controls

=> understanding and utilizing the major fuel of future electricity supply

