Aquifer thermal energy storage systems ensuring continuous cooling in arid climates compared to applications in Europe

Felina Schütz, Gerd Winterleitner, Christian Wenzlaff, Ernst Huenges

Energy consumption in Oman

Total power supplied in Oman ~25 TWh^a (Germany ~650 TWh^d)

Total residential cooling use 2014

~11.6 TWh^a (residential heating: Germany ~136 TWh^d)

Residential annual power used for cooling in Muscat **~5.8 TWh**^a (district heating Berlin ~8.5 TWh^e)

^a Authority for Energy Regulation, Oman
 ^b Residential Energy Use In Oman: A Scoping Study, Trevor Sweetnam
 ^cDIW ECON

^c Energy Information Agency, USA ^d International Energy Agency

Concept for a continuously operating cooling system based on renewables

Absorption chiller requires water of 70– 110°C to produce chill of 6–8°C

To ensure continuous cold supply a storage is required which can be installed in the underground

Funded by:

The Research Council

Towards an Effective National Innovation System

Different storage options

- Possibilities for thermal energy storage
 - Sensible heat storage
 - Latent heat storage
 - Thermochemical heat storage
- Options of thermal underground storage
 - Borehole thermal energy storage (BTES) Tank thermal energy storage (TTES)
 - Aquifer thermal energy storage (ATES)

Concepts of ATES

Doublet (group of wells)

- At least two wells
- Both wells tap the same aquifer
- "standard" storage

Mono well - desing

- Just a single well required
- One well taps two aquifers
- Complex well design and completion
- Mixing of different groundwaters → effects?
- So far rarely implemented

Mono-well in two seperated aquifers

Zeghici et al., 2015^a

GFZ Helmholtz Centre Potsdam ^aZeghici et al.,2015: Integrated assessment of variable density-viscosity groundwater flow for a high temperature mono-well aquifer thermal energy storage (HT-ATES) system in a geothermal reservoir

ATES

Depending on the temperature level three different types can be characterized (Drijver et al., 2012):

- 1. Low-temperature ATES with T < 30° C,
- 2. Mid-temperature ATES in the range of T = 30-60 °C and
- 3. High-temperature ATES with T > 60°C.

Motivation in Europe

Motivation in an arid climate

ATES in Europe

Netherlands

2740 Registrated ATES systems in 2012 with a total estimated heat load of 1103 MW_{th}^b

Amount of ATES systems in the utility sector^c

HELMHOLTZ

All licensed ATES systems in 2012^a

GFZ Helmholtz Centre

^aBonte et al.,2013: Environmental impacts of aquifer thermal energy storage investigated by field and laboratory experiments

^bCBS, 2013: Hernieuwbare energie in Nederland 2012 (Renewable energy in the Netherlands 2012).

^oSommer, 2015: Modelling and monitoring of Aquifer Thermal Energy Storage

ATES in Europe

Sweden

- Systems in operation (2016): 170
- Overall heat load:
 ~ 650 MW_{th}
- Overall storage capacity: ~ 1700 GWh/a
- Low-temperature ATES systems:
 - > 12-16 °C at warm side
 - 2-4 °C at cold side^a

Stockholm-Arlanda Airport^b

- Storage temperature:
 - 2-3 °C at cold side
 - > 20-25 °C at warm side
- 5 cold and 6 warm wells in 15-30m depth
- Cooling/heating load between 6-7 MW_{th}
- Storage capacity: 20 GWh_{th}/a
- In operation since 2009^{a,c}

GFZ Helmholtz Centre Pots DAM ^aGehlin and Anderson, 2016: Geothermal Energy Use, Country Update for Sweden ^bWigstand, 2010: The ATES project – a sustainable solution for Stockholm airport ^cAnderson, 2009: The ATES project at Stockholm Arlanda Airport

ATES in Germany

- 1. Neubrandenburg
 - ➤ In operation since 2005
 - Gas and steam turbine heat and power plant,
 waste heat is fed into the underground
 High-temperature ATES used for heating
- 2. Rostock-Brinkmannshöhe
 - ➤ In operation since 2000
 - ➤ solar heating plant with ATES
 - Low- to mid temperature storage used for heating
- 3. Berlin- German parliament buildings

ATES German parliament buildings in Berlin

GFZ Potsdam, 2017

Cooling system Oman - combined with HT-ATES

HT-ATES System

GFZ Helmholtz Centre

Numerical simulation of a daily storage

heat surpluses and heat deficits for one representative day were calculated and implemented to the model

Parameter	charging/supply	discharging/demand
Q [kW]	82	71
ΔΤ [K]	11.5	10
ṁ [m³/d]	146	146
T [°C]	100	≥ 90
v[m/d]	0	0

Conclusion ATES

- HT-ATES can be used in an arid climate to stabilize a cooling system if the geological conditions are suitable
- The storage has to fuction in a daily rhythm. Seasonal changes are playing a minor role.
 - Especially the high temperatures required for absorption cooling are a challenge, further research is required
- ATES in Europe is already succesfully proven
 - further facilitation and stimulation is required especially in Germany to increase the number of sites

HELMHO

Harsh weather conditions in Oman

- Average annual temperature in Muscat: 29°C
 - May, June, July are the hottest months
 - temperature can rise to 50°C

The ambient air temperature of Oman is too high to efficiently reject the waste heat of an absorption chiller to the surrounding environment

Waste heat management in Oman

stable temperature below 35° C is required to efficiently reject the process waste heat of an absorption chiller

- cooling demand over the whole year
- dry cooling tower during summer time insufficient
- wet cooling tower and underground heat rejection for waste heat management sufficient

Waste heat management

Conclusion waste heat management

The rejection of process waste heat to the underground is a relevant topic for the whole Arabian Peninsula and also for other countries in arid climates:

- The underground offers stable conditions over the whole year
- In case the geological conditions are suitable it is an efficient and cheap alternative to the conventional options

