

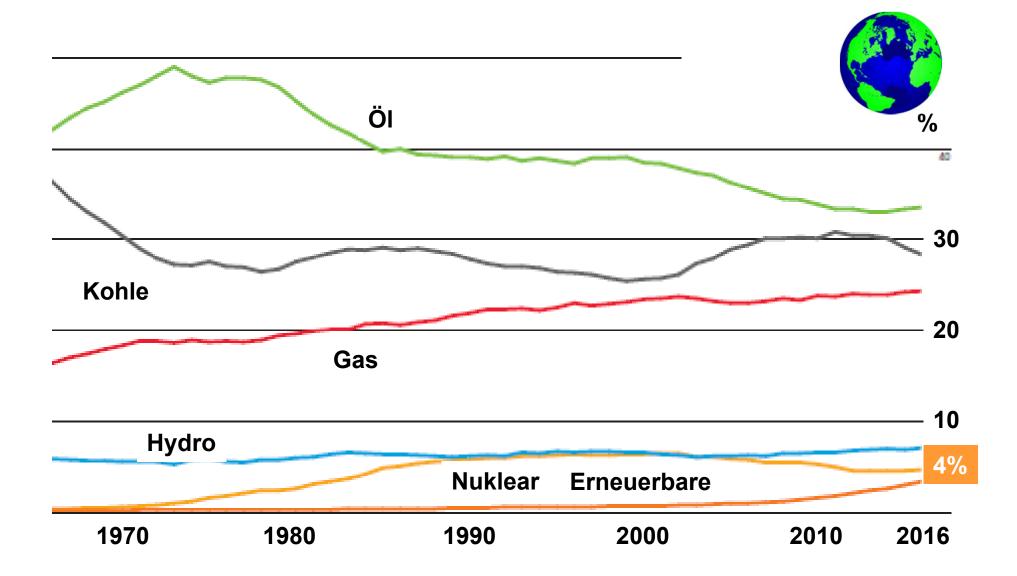
Die Rolle der Kernenergie in der Welt

- März 2018 -

Dr.- Ing. L. Mohrbach

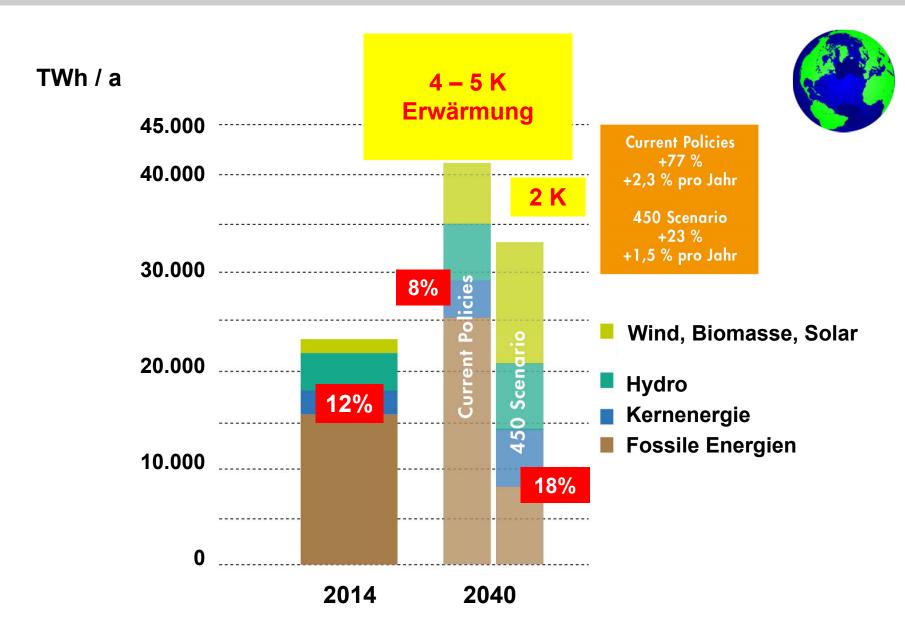
Inhalt

- Kernenergie und Klima
- Generation I III
 - Evolutionär: European Pressurized Water Reactor (EPR)
 - Revolutionär: Advanced Pressurized Water Reacter (AP-1000)

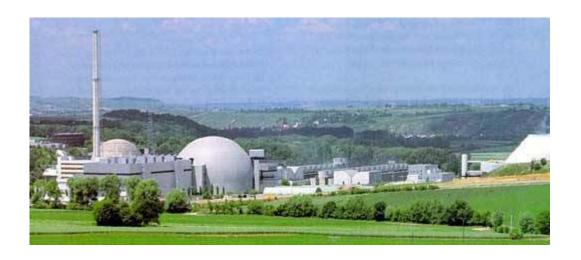


- Flüssigmetallgekühlte Reaktoren (LMR)
- Hochtemperaturreaktoren (HTR)
- Fortgeschrittene Konzepte
- Kleine Modulare Reaktoren (SMR)
- Kernenergie in der Welt
 - Schweiz, Kanada, USA, Japan, Finnland, China, Indien

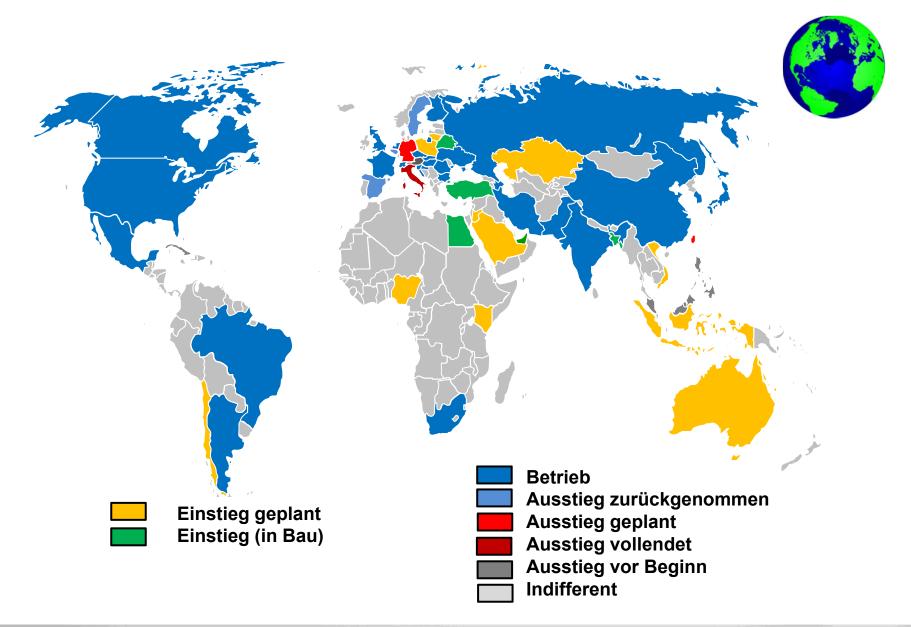
Primärenergieträger- Anteile weltweit



www.bp.com/.../energy...2017/bp-statistical-review-of-world-energy-2017-full-re...


Stromerzeugung weltweit: Pariser Klimaabkommen 2017

Kernenergie reduziert CO₂- Emissionen wirkungsvoll



- 450 Kernkraftwerke liefern ca. 12% der weltweiten elektrischen Energie.
- Sie sparen pro Jahr rd. 2 Mrd. t CO₂- Emissionen.
- Dies entspricht etwa 6% der weltweiten anthropogenen CO₂- Emissionen.

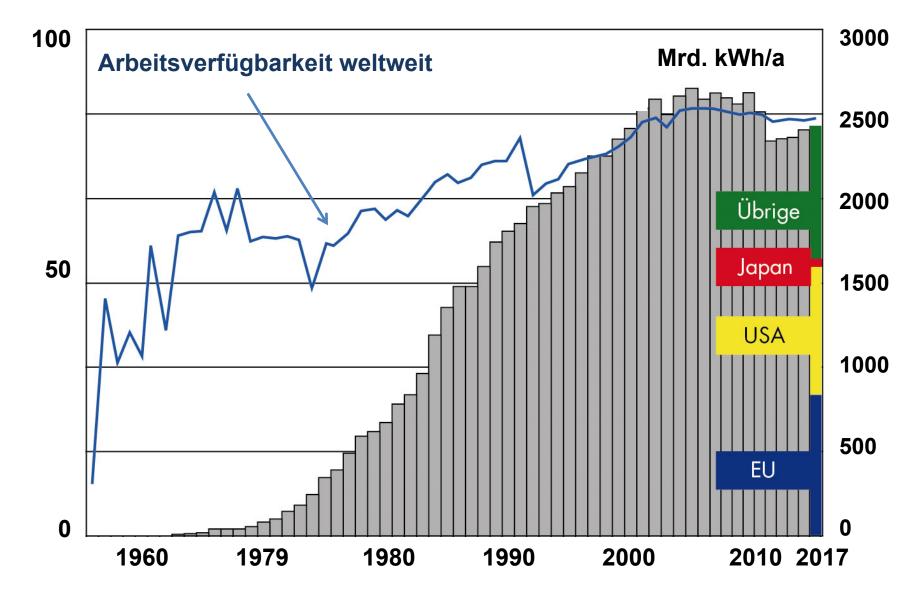
31 Länder + 5 Einstieg + 10 Interessenten (1/2018)

Kernenergiepolitik nach Fukushima

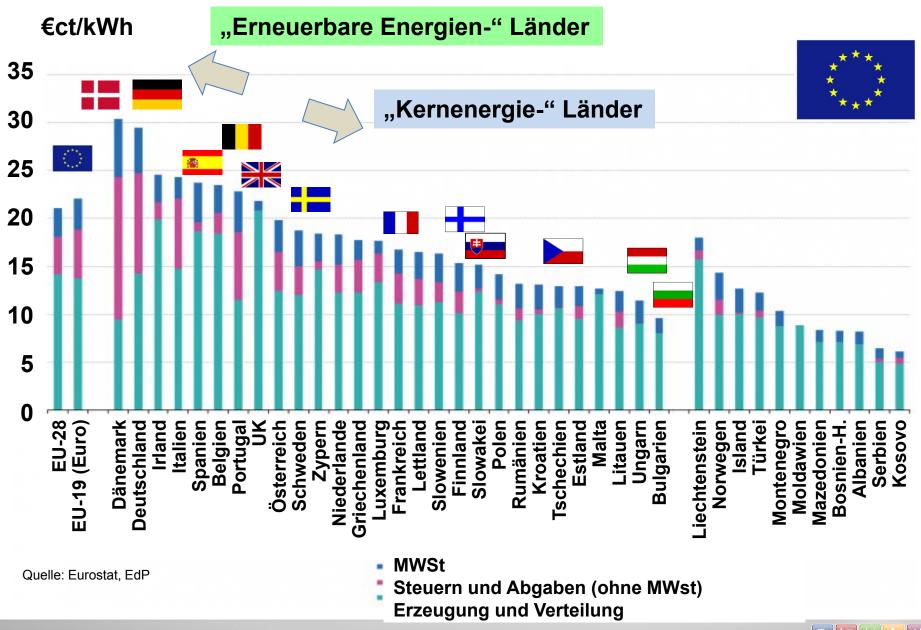


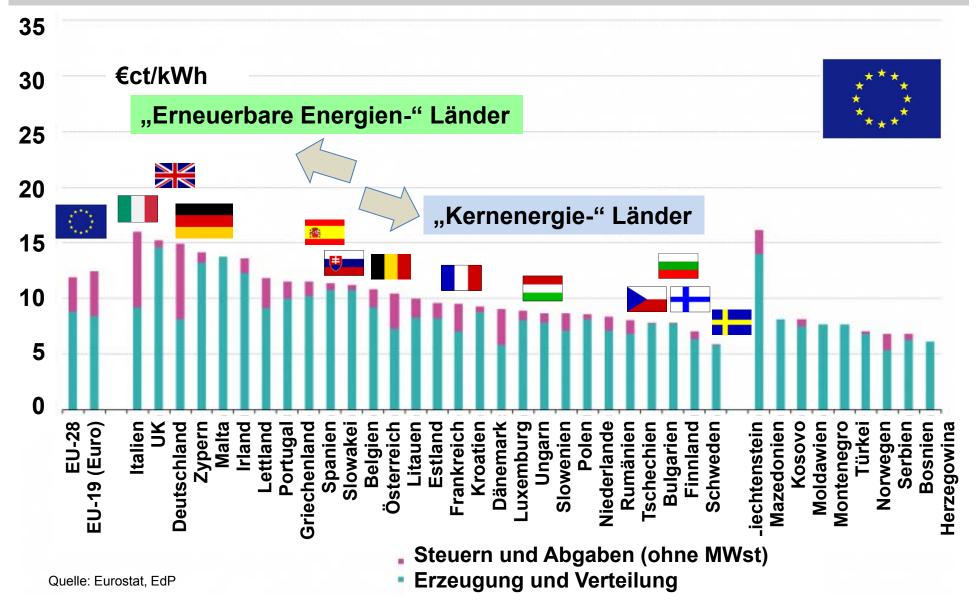
Folgen	Land								
Kernenergie- Einstieg	UAE	PO	BY	C ∗ TR	SA	EG	BD	JO	
Neubauprojekte	AR	BR	*)	RU	SE	GB	® IN	US	
Unveränderte Weiterentwicklung	BG	CZ	FI	HR	HU	IR	KR		
vveiterentwicklung	MX	PK PK	RO	\$K	TW	UA			
Neubaumoratorium	CA	FR	LT	NL	ZA				
Umkehrung des Ausstiegs	CH	JP							
Restlaufzeiten verlängert	BE	ES							
Ausstieg aus dem Wiedereinstieg	IT								
Abschaltung von in Betrieb befindlichen Anlagen, Ausstieg	GER								

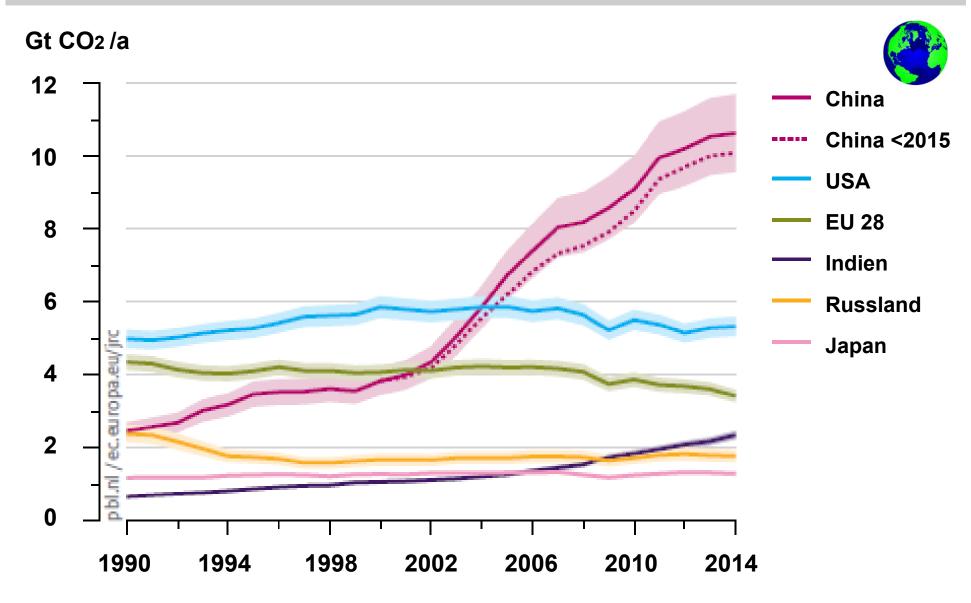
450 Kernkraftwerke in 31 Ländern (12/2017)


Stilllegung geplant: 21 Im Bau: 89 (IAEA: 57) Projekte: 414 + 90

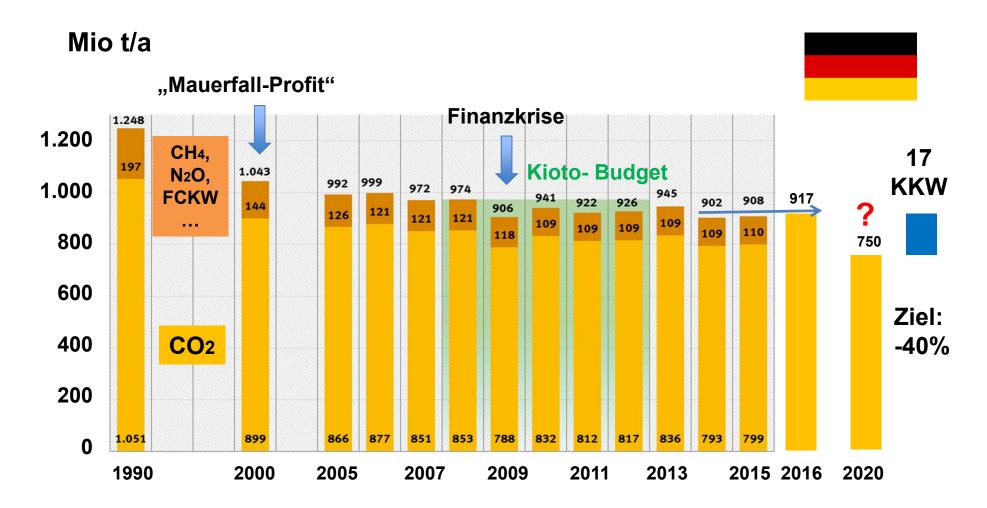
Stromerzeugung aus Kernenergie weltweit




Haushaltsstrompreise in Europa


Industriestrompreise in Europa

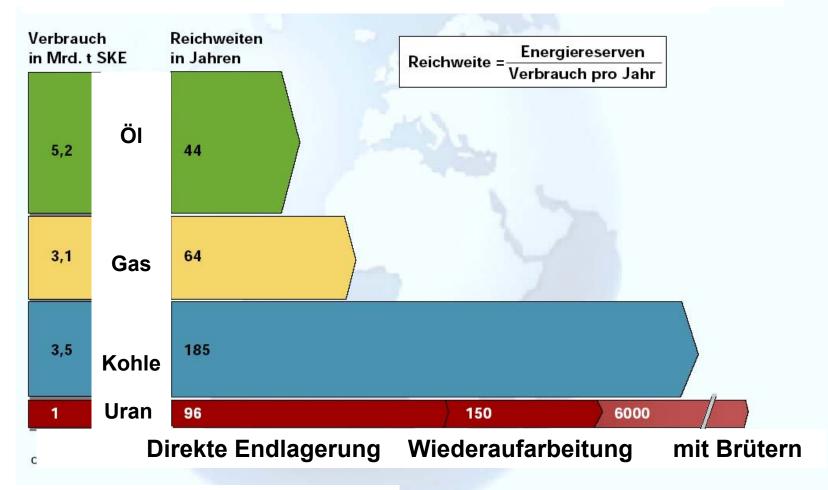
CO2- Emissionen aus Verbrennung plus Zementproduktion



Quelle: http://edgar.jrc.ec.europa.eu/img/part/co2_report_2015_009g_muc15.png

Treibhausgasemissionen (CO₂- Äquivalente)

Quelle: Umweltbundesamt Emissionssituation 2016, Energie-Infodienst 2017



Reichweiten von Primärenergieträgern

Uran (und Thorium) in großen Mengen in der Erdkruste vorhanden Quasi unbegrenzte Mengen im Meerwasser gelöst Brüter strecken Uranvorräte ca. um den Faktor 60

Quelle: Bundesanstalt fuer Geowissenschaften und Rohstoffe

Inhalt

- Kernenergie und Klima
- Generation I III
 - Evolutionär: European Pressurized Water Reactor (EPR)
 - Revolutionär: Advanced Pressurized Water Reacter (AP-1000)
- Generation IV
 - Flüssigmetallgekühlte Reaktoren (LMR)
 - Hochtemperaturreaktoren (HTR)
 - Fortgeschrittene Konzepte
- Kleine Modulare Reaktoren (SMR)
- Kernenergie in der Welt
 - Schweiz, Kanada, USA, Japan, Finnland, China, Indien

Einteilung fortschrittlicher Entwicklungen

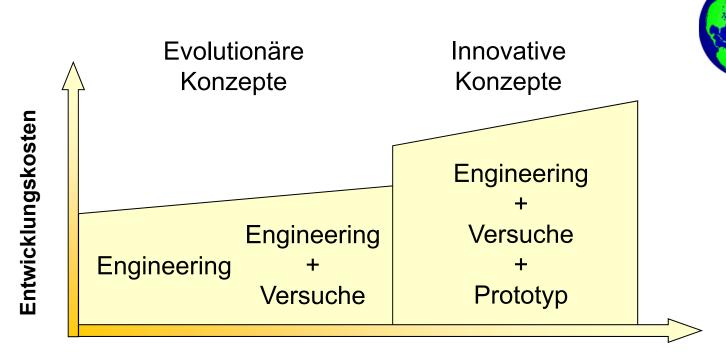
Westinghouse 4-Loop

Siemens- KWU Vorkonvoi

Framatome EPR

INVAP (Arg) CAREM

Verhesserung von


1965 1995 2010 2030

Generation I Generation III Generation III+ Generation IV

Frühe Prototypen	Kommerzielle Leistungs- reaktoren	Weitere Evolutionäre Steigerung der Anlagen Wirtschaftlichkeit	Wirtschaftlichkeit, Sicherheit, Abfallökonomie
(~100 MW) DWR, SWR, Magnox	(600 – 1200 MW) CANDU, AGR, RBMK	Flüs	Brüter, chtemperaturreaktoren, ssigbrennstoffreaktoren Dampfüberhitzung - Kleinreaktoren ("SMR")

Evolutionäre vs. Innovative (revolutionäre) Entwicklungen

Entfernung von existierenden Konzepten

Moderate, ggf. mit Versuchen abgesicherte Veränderungen unter Beibehaltung einer bewährten konstruktiven Auslegung

Weitaus umfangreichere Forschung und Entwicklung, ggf. mit Prototypenbau

Drei Entwicklungslinien

"Evolutionär": Economy of Scale + Core Catcher + Beton

EPR

"Revolutionär": Vereinfachung durch mehr passive Sicherheit AP-1000

"Dezentral": Kleine Einheiten (Wärmeauskopplung, Prozessdampf...)

KLT-40 S

Reaktoren für den Weltmarkt 2018 (Vorgängerbaureihen)

VG	8
POWERT	ЕСН

	Name	MWel	Entwickler		In E	3etrieb	lm Bau	Geplant
	EPR	1650	Framatome/ EdF			-	6	10
	Atmea 1	1150	Framatome/ Mitsubishi		•	-	-	4
	AP-1000	1100	Brookfield (CAN)/ Westinghouse			-	2	-
	CAP-1000	1100	CNNC (China)/ Westinghouse	*)		-	8	18
	CAP-1400	1300	CNNC	*)		-	-	2
DWR	ACPR-1000	1000	China GN/ CNPC	*)		24	6	-
	Hualong- 1	1150	China GN/ CNNC	*)		-	6	4
	WWER- 1000	1000	Atomenergoprojekt, OKB Gidropress			36	5	-
	MIR- 1200	1200	Atomenergoprojekt, OKB Gidropress			2	13	13
	TOI 1300	1300	Atomenergoprojekt, OKB Gidropress			-	2	-
	APR	1400	Korea Electric			1	9	3
SWR	ABWR	1380	General Electric, Hitachi (Toshiba)		•	5	2	4
SWK	ESBWR	1600	General Electric			-	-	2
CANDU	E-CANDU-6	600	SNC Lavalin/ China GN	*	*)	2	-	1
CANDO	IPHWR-700	700	Nuclear Power India	•		-	6	8
GEN IV	HTR-PM200	200	China NEC	*)		-	2	2
GENIV	CFR-600	600	TerraPower/ CNNC		*)	-	-	2
	CAREM	27-100	CNEA (Arg.)/ INVAP	•		-	1	1
SMR	KLT-40	35	Atomenergoprojekt			-	1x2	4
	Linglong 1	100	CNNC-CNEC New Energy/ NPIC	*)		-	-	2

Zusammenfassung Weltmarkt für Kernkraftwerke

8 Druckwasserreaktoren (5 Hersteller)

2 Siedewasserreaktoren (1 Hersteller)

2 Schwerwasserreaktoren (2 Hersteller)

GENERATION- IV- Programm GIF (US- Energieministerium 2002)

Sechs fortgeschrittene Reaktortypen mit verbesserter/m

- Sicherheit,
- Wirtschaftlichkeit,
- Proliferationsrisiko

Kleine modulare Reaktoren:

Ca. 20 Druckwasserreaktoren

Ca. 5 Leichtwassereaktoren mit überkritischen Dampfparametern

Ca. 10 Hochtemperaturreaktoren

Ca. 10 Flüssigmetallgekühlte (schnelle) Reaktoren (incl. Brüter)

Ca. 10 Salzschmelzereaktoren

Hinkley Point C (EdF Energy)

2 x 1600 MWe AREVA- EPR (4th-of-a-Kind)

Erstes privat finanziertes Kernkraftwerksprojekt in UK

2012: EPR Design Certification ("GDA")

2012: "Contract for Difference":

- Strike Price: 92.50 £/MWh (35a) (günstiger als Gas, Wind, Kohle...)
- (-3 £/MWh wenn Sizewell C folgt)
- Inflations- indexiert
- Incl. Brennstoff, Entsorgung, Abriss
- Anlagenlebensdauer 60a +
- Errichtungskosten 16 G£
- Gerechnete payback time (24 TWh/a): 7.2 a
- Investoren: EdF (66.5%) + CGN China General Nuclear (33.5%)
- 900 permanente Jobs, + 5600 während Errichtung (57% UK)

Okt. 2014: Zustimmung der Europäischen Kommission (heute: Brexit?)

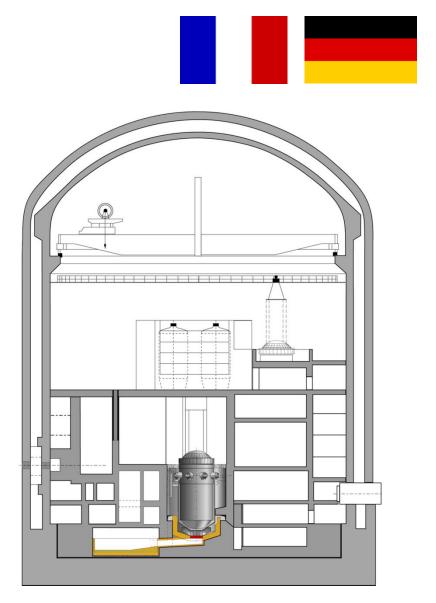
Okt. 2015: Standort- Genehmigung

28. Juli 2016: EdF Investitionsentscheidung (verzögert d. franz. Gewerkschaften), Baubeginn

15 Sept. 2016: Re- Evaluierung neue Regierung Theresa May ("Brain Drain nach China?")

2023 - 25: In Betrieb (7% UK Stromerzeugung)

10 in Planung: 2 APR Moorside, 2 EPR Sizewell, 4 ABWR Wylfa+Oldbury, 2 Hualong Bradwell


Gen III+: EPR

 Evolutionäre Entwicklung aus der deutschen Konvoi- und der französischen N4- Baulinie

- Weitere Verbesserung der Störfallvermeidung
 Eintrittswahrscheinlichkeit für Kernschmelzen <1·10⁻⁷/a
- Beherrschung schwerster, extrem unwahrscheinlicher Störfälle.
 Begrenzung der Auswirkungen auf die Anlage selbst
- Wirtschaftlich konkurrenzfähige Stromerzeugung

Gen III+: EPR

Technische Daten:

Leistung 4272 MWth, 1525 MWel

Primärsystem 4 Kühlkreisläufe mit je 1 Pumpe im kalten

Strang und 1 U-Rohr-Dampferzeuger

155 bar Arbeitsdruck

Kern 241 BE 17x17

aktive Höhe 420 cm

Kühlwassereintrittstemperatur 291,5°C

Kühlwasseraustrittstemperatur 326,5°C

Kühlwassermassenstrom 21 t/s

npi, Frankreich

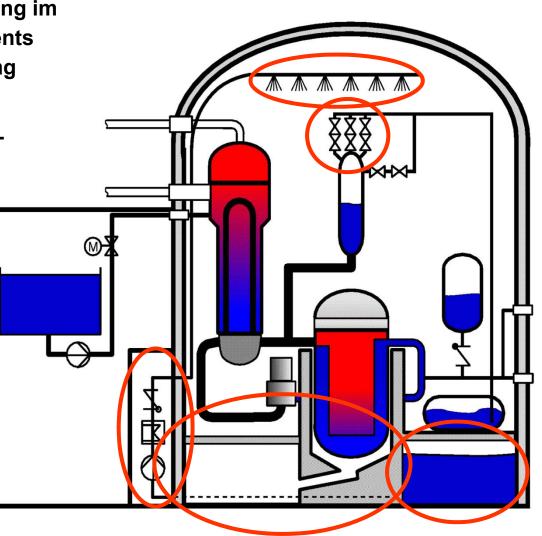
Sicherheitseinrichtungen

- **Gefilterte Druckentlastung**
- Wasserstoff- Rekombinatoren
- **Doppelschalen- Containment**
- **Core Catcher**
- In- Containment Refueling Water Storage Tank für Noteinspeisung und Schmelzekühlung
- Notkühlsystem mit Notstromversorgung und Backup-Notstromdieseln
- **Druckhalter mit Entlastungs**einrichtung auf < 20 bar
- Core Catcher Kühlung

2 Residual Heat Removing Systems mit Containment-Sprühsystem und

Quelle: TVO. Nuclear Power Plant Unit Olkiluoto 3

Gen III+: EPR

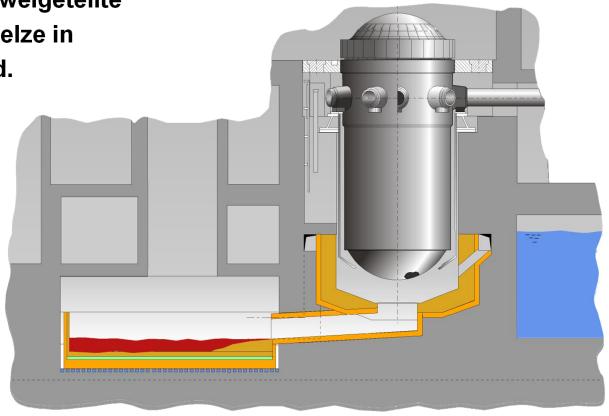


Sprühsystem zur Druckbegrenzung im Containment (in Betoncontainments wg. geringerer Wärmeübertragung erforderlich).

 IRWST stellt großes Flüssigkeitsvolumen bereit, Sammlung von Sumpfwasser.

Spezielle Abblaseventile zur schnellen Druckentlastung des Primärsystems.

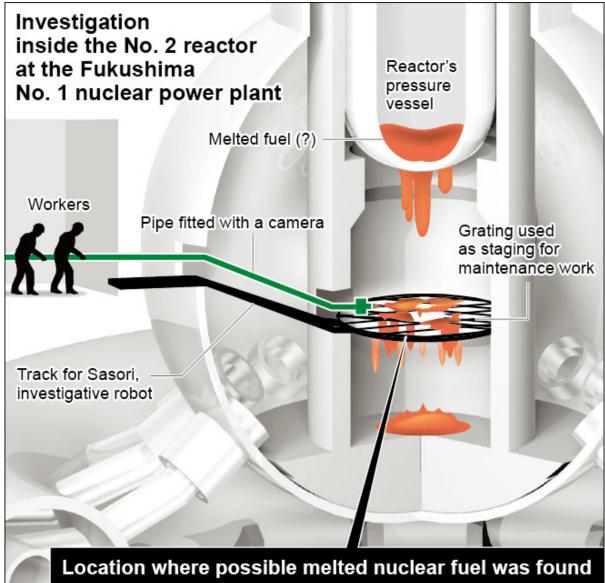
 Ausbreitungsfläche zur Begegnung auslegungsüberschreitender Störfälle mit Kernschmelzen.



Gen III+: EPR

- Kernfängerkonzept
- Zeitlich und räumlich zweigeteilte Überführung der Schmelze in einen sicheren Zustand.
- Mehrschichtige Ausbreitungsfläche.
- Langfristige Kühlung von unten sowie
- Flutung von oben aus dem IRWST

Block 2: Steuerstabantriebsraum (unterhalb Reaktor) 2017

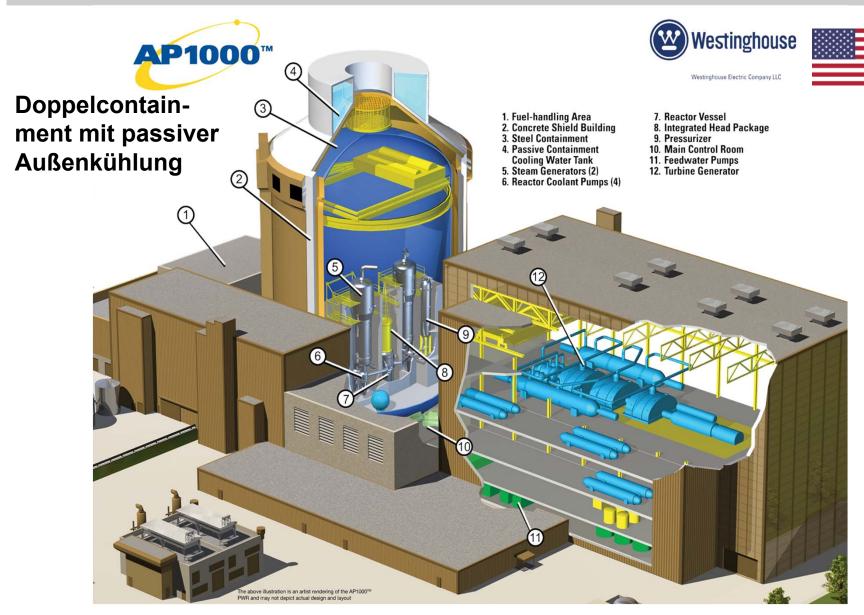


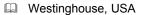
Feinfragmentierte Schmelzmasse (Versagen des Reaktordruckbehälters unter Überdruck?)

Bodengräting auf ca. 1 m aufgeschmolzen und abgestürzt

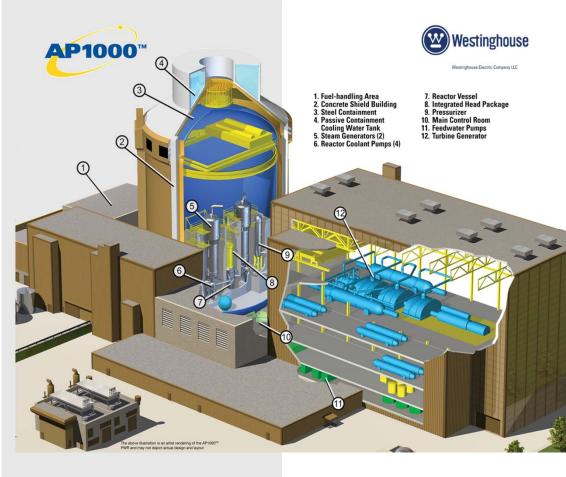
Quelle: Asahi Shimbun

Block 2: Steuerstabantriebsraum (Boden) 2018





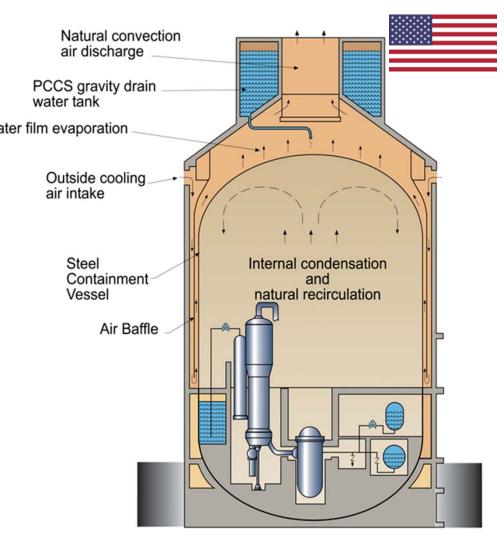
Erstarrtes Corium mit Brennelementkopfbügel



- Westinghouse ist Hersteller von ca. ¾ aller DWR weltweit.
- Evolutionäre Technik
- Konsequente Vereinfachungen
- Erweiterte passive Systeme (u.a. keine "nuklearen" Diesel erford.)
- AP-600 in 1999 durch die US-NRC zertifiziert
- Betreiber: Zu kleine Leistung
- AP-1000 in 2005 zertifiziert, 2011 in UK
- Lizenz für China, Bau von 4 Blöcken
- 2012: Baubeginn 4 Blöcke in US
- 2016: USA: Bauverzögerungen
- 2017: Insolvenz Westinghouse,
 Abbruch VC Summer 2-3
- 2018: Inbetriebnahme Sanmen-1
- 2023: Inbetriebnahme Vogtle-3

Technische Daten AP-600 (AP-1000):

Primärkreis	2 Kühlkreisläufe mit je 1 Hot Leg, 1 Dampferzeuger, 2 Cold Legs, 2 Kühlmittelpumpen.
Leistung	1940 MWth, 600 MWel (AP-1000: 1117 MWel)
Kern	Brennelement: 17x17, AP-600: 145 Elemente, niedrige Kernleistungsdichte, AP-1000: 157 Elemente, hohe Leistungsdichte. Zyklen: 18 oder 24 Monate (AP-1000: 18 Monate).
Dampferzeuger	U-Rohr-Dampferzeuger mit internem Wasserabscheider. Je 2 Kühlmittelpumpen direkt unterhalb Dampferzeuger.
Anwondung kon	wantianallar Kampanantan — kain Prototyn arfordarlich


Anwendung konventioneller Komponenten – kein Prototyp erforderlich.

Containment:

- Inneres Stahlcontainment.
- Äußeres Containment mit Water film evaporation
 Schutzfunktion
 (Einflüsse von Außen).
- Passives ContainmentKühlsystem (PCS) =Wärmesenke im Störfall
- Funktion: Druckbegrenzung im Containment
- Naturkonvektion.
- Zusätzlich kann das Containment durch Wasser gekühlt werden (aktive Auslösung)

AP1000 Passive Containment Cooling System

Westinghouse, USA

Inhalt

- Kernenergie und Klima
- Generation I III
 - Evolutionär: European Pressurized Water Reactor (EPR)
 - Revolutionär: Advanced Pressurized Water Reacter (AP-1000)

- Flüssigmetallgekühlte Reaktoren (LMR)
- Hochtemperaturreaktoren (HTR)
- Fortgeschrittene Konzepte
- Kleine Modulare Reaktoren (SMR)
- Kernenergie in der Welt
 - Schweiz, Kanada, USA, Japan, Finnland, China, Indien

USA 2001: Generation IV International Forum (GIF)

Generation III ("Evolutionär"):

PWR - Pressurized Water Reactor

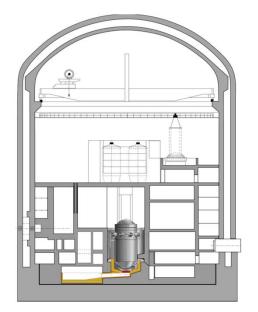
BWR – Boiling Water Reactor

CANDU – Heavy Water Reactor

Generation IV (Revolutionär"):

VHTR – Very-High-Temperature Reactor

GFR - Gas-Cooled Fast Reactor


SFR - Sodium-Cooled Fast Reactor

LFR - Lead-Cooled Fast Reactor

SCWR – Supercritical Water-Cooled Reactor

MSR - Molten Salt Reactor

Z.T. auch zur H₂- und Prozesswärmeerzeugung.

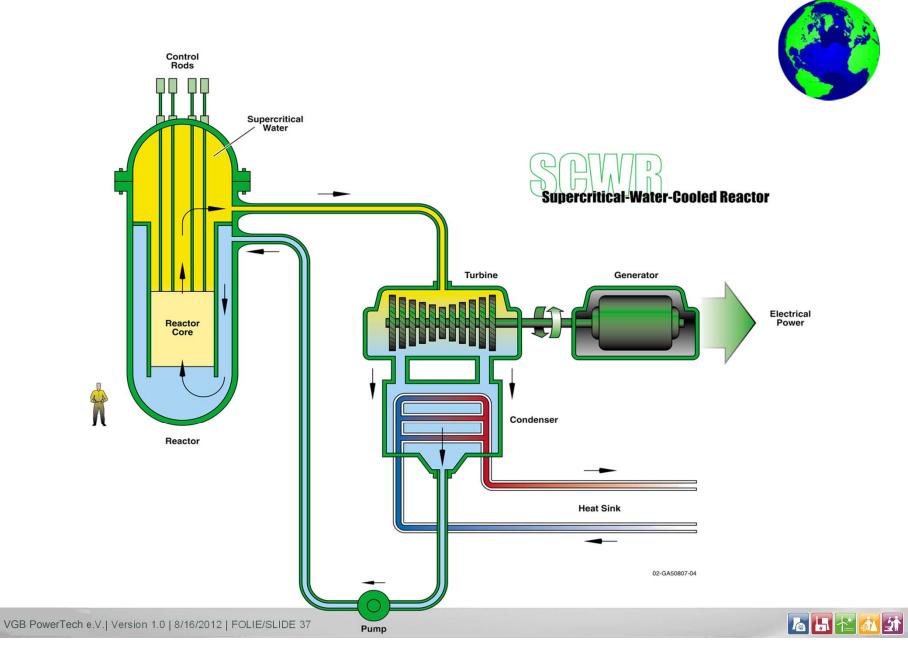
		****					D		
VHTR	•	•	•	•	•	•	•	•	•
GFR		•	•	•	•	•	•	•	•
SFR			•	•	•			•	•
LFR		•		•	•				•
SCWR	•	•		•	•				•
MSR		♦	•						♦

Co-Chair im Steering Committee Roland Schenkel, EC, 23.11.2005, Berlin

Ziele des "Generation IV International Forum" nach 2030

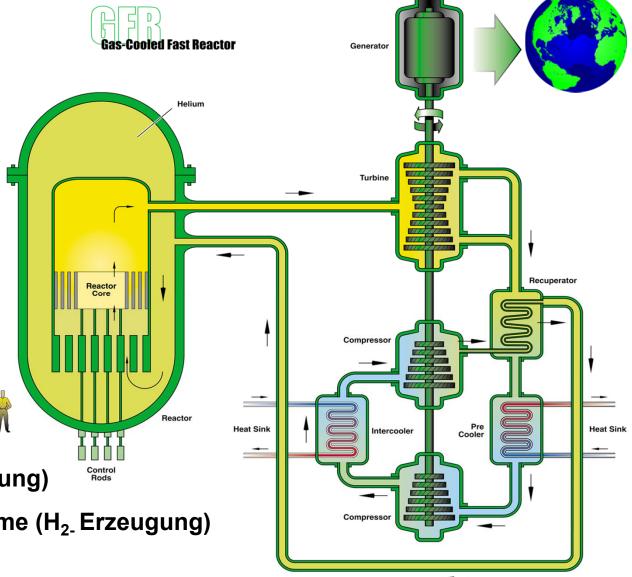
Weiterentwicklung (nach GEN III):

- Wirtschaftlichkeit
- Sicherheit und Zuverlässigkeit
- Minimierung der Rückstände (Partitioning + Transmutation)
- Ausweitung der Brennstoffbasis (U, Pu Recycling, Th)
- Safeguards (Proliferations- Beständigkeit)

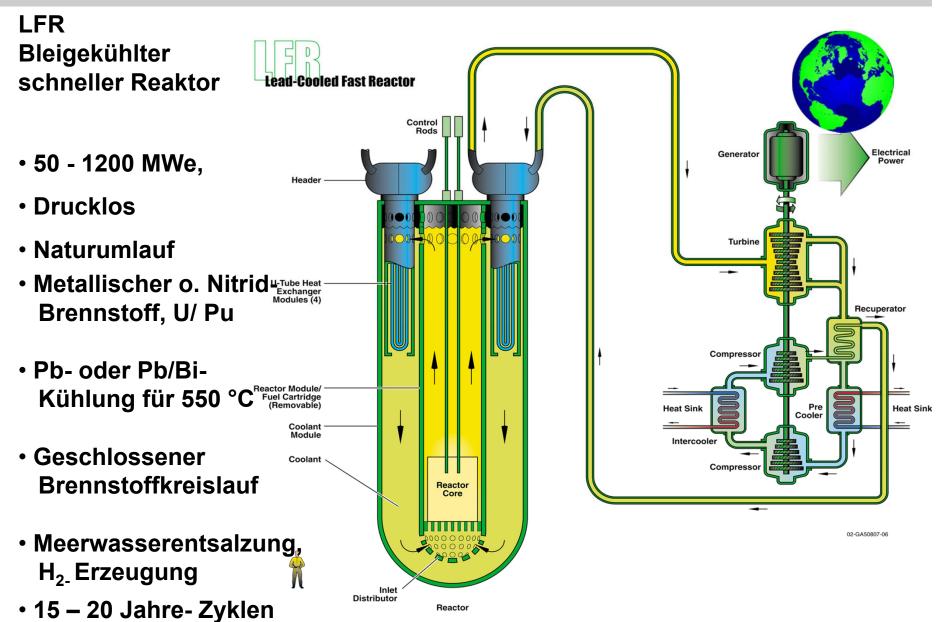

Weitere Anwendungen:

- Elektrolytische Wasserstoffproduktion
- Synfuel- Herstellung
- Meerwasserentsalzung
- Prozesswärme

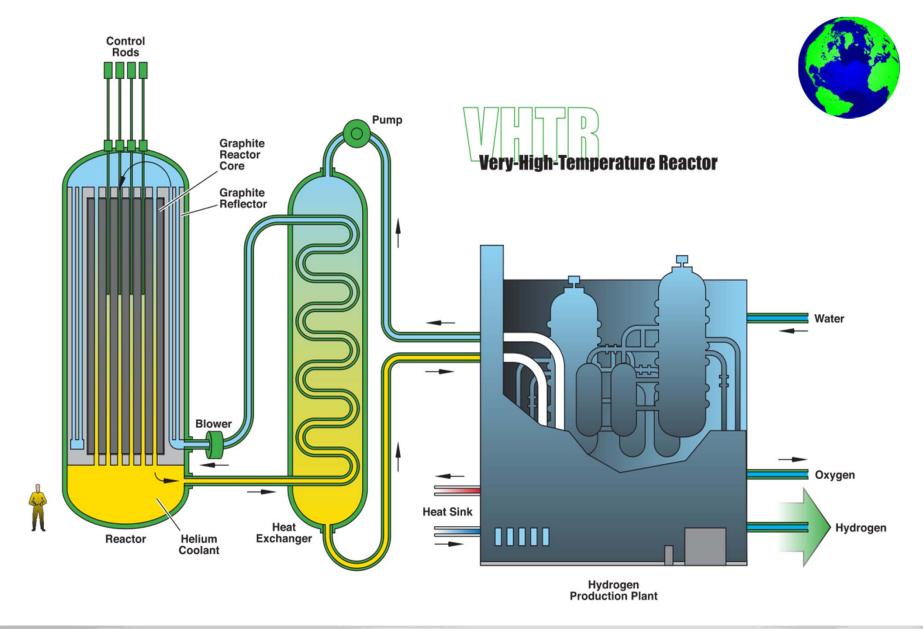
Gen IV (1): Supercritical- Water- Cooled Reactor = HPLWR

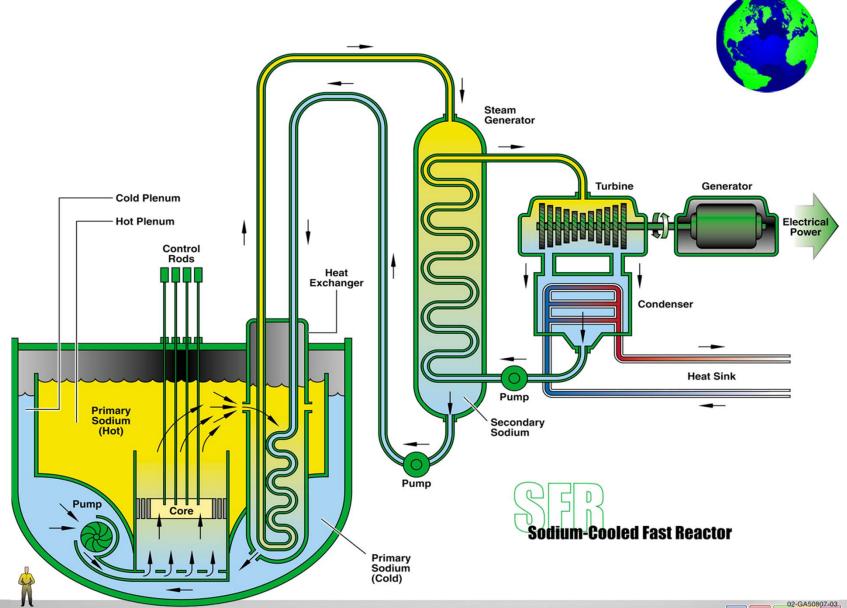


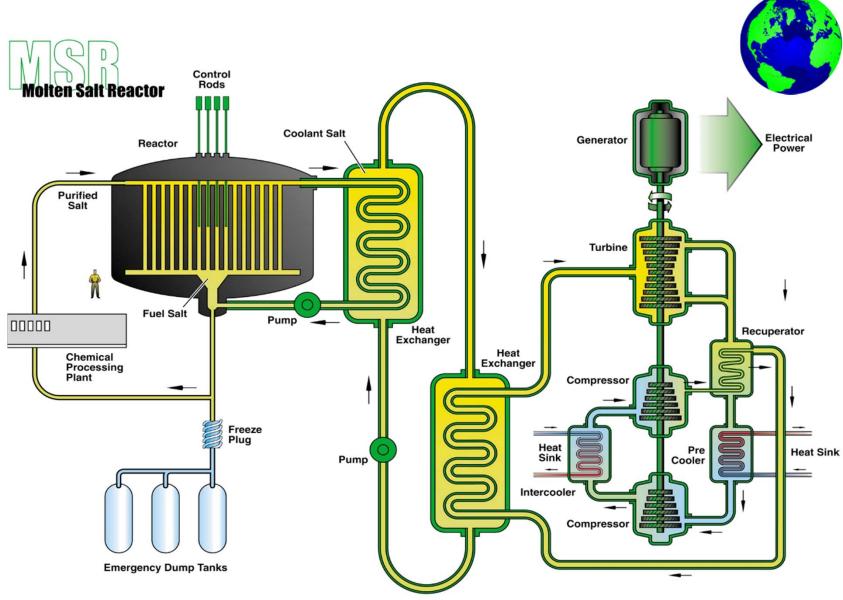
Gen IV: Gas- Cooled Fast Reactor



- 600 MWth,
- Wirkungsgrad 48%
- Keramischer Brennstoff, U/ Pu (20%)
- Heliumgekühlt (Brayton Cycle)
- Geschlossener Brennstoffkreislauf
 (Aktinidenverbrennung)
- 850 °C- Prozesswärme (H₂₋ Erzeugung)


Gen IV: Lead- Cooled Fast Reactor


Gen IV(4): Very- High- Temperature Reactor

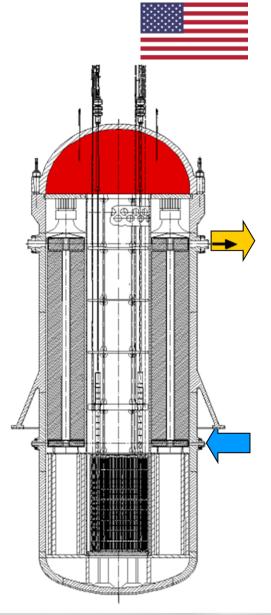

Gen IV (5): Sodium- Cooled Fast Reactor

Gen IV (6): Molten Salt Reactor

Inhalt

- Kernenergie und Klima
- Generation I III
 - Evolutionär: European Pressurized Water Reactor (EPR)
 - Revolutionär: Advanced Pressurized Water Reacter (AP-1000)

- Flüssigmetallgekühlte Reaktoren (LMR)
- Hochtemperaturreaktoren (HTR)
- Fortgeschrittene Konzepte
- Kleine Modulare Reaktoren (SMR)
- Kernenergie in der Welt
 - Schweiz, Kanada, USA, Japan, Finnland, China, Indien

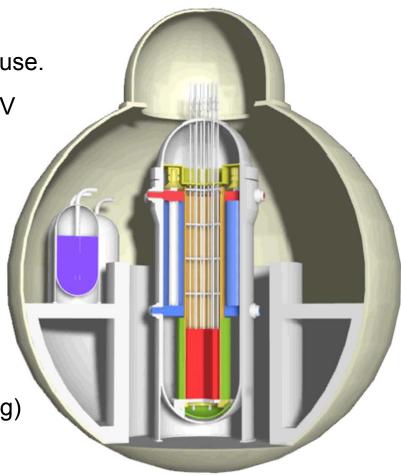


Gen III: Innovative Konzepte – IRIS (Westinghouse)

International Reactor Innovative and Secure

- Entwicklung seit 1999,
 Konsortium unter Leitung von Westinghouse.
- Review innerhalb von NERI-Generation IV (US-DOE).
- Modulares System mit 100-300 MW_{el}.
- DWR mit Integraldruckbehälter:
 - Kern
 - Steuerstäbe
 - Kühlmittelpumpen (4)
 - Dampferzeuger (8 in Paaranordnung)
 - Druckhalter

Gen III: Innovative Konzepte – IRIS (Westinghouse)

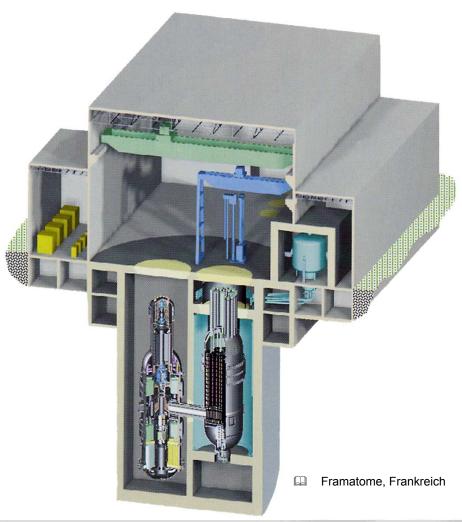


International Reactor Innovative and Secure

Entwicklung seit 1999,
 Konsortium unter Leitung von Westinghouse.

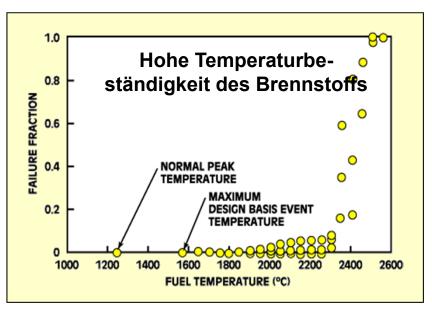
Review innerhalb von NERI-Generation IV (US-DOE).

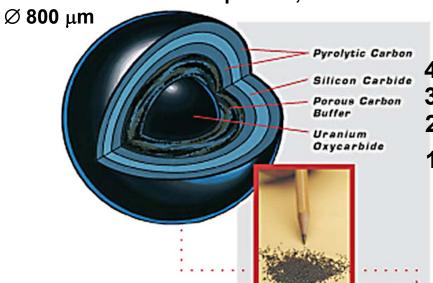
- Modulares System mit 100-300 MW_{el}.
- DWR mit Integraldruckbehälter:
 - Kern
 - Steuerstäbe
 - Kühlmittelpumpen (4)
 - Dampferzeuger (8 in Paaranordnung)
 - Druckhalter
- Hochdruckcontainment.


General Atomics Gas Turbine/ Modular Helium Reactor GT-MHR

- He- gekühlter, graphitmoderierter Hochtemperaturreaktor
- Unterirdisch
- Entwicklung seit 1985 von General Atomics, Framatome, Fuji Electric, OKBM/ MINATOM (Russland).
- Helium-Hochtemperaturturbine- Brayton Cycle
- Kernschmelzresistent:

Nachwärmeabfuhr durch Wärmeabstrahlung




Weitere Entwicklungen

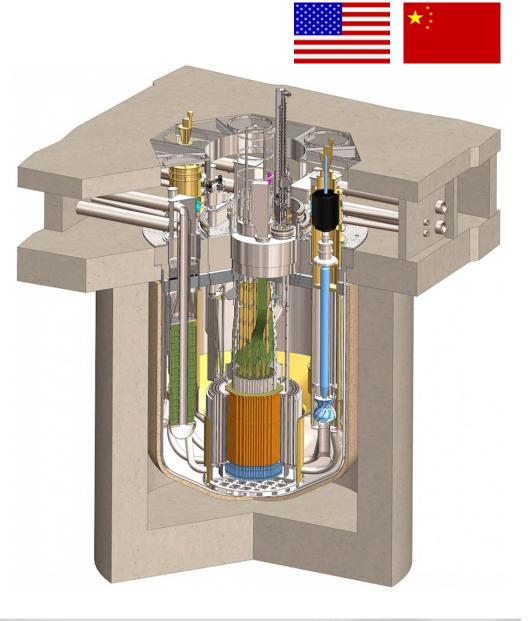
Gasgekühlte Konzepte – GT-MHR

Brennstoffschichten:

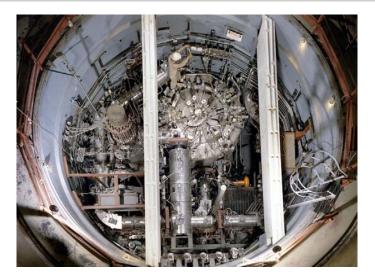
- 1 Urandioxid
- 2 Poröses Graphit:Puffer für Spaltgase
- 3 Siliziumkarbid: Diffusionssperre für feste Spaltprodukte
- 4 Pyrolytisches Graphit: Mechanische Stabilität (Druck der Spaltgase)

Brennstäbe aus Brennstoffpartikeln

Brennstäbe werden in hexagonale Graphit-BE eingesetzt

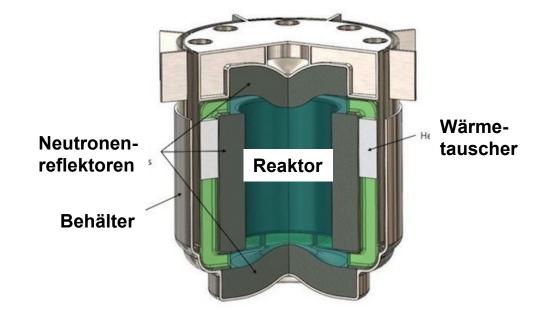

Terrapower Travelling Wave Reactor (Bill Gates)

- "Schneller Brüter"
- Radial wandernde Brutzone
- Multijahrzyklen
- Abgereichertes U-238 -> Pu-239
- Metallischer Brennstoff
- Keine Wiederaufarbeitung
- Verbesserte Safeguards
- Offene Brennstäbe?
- Effiziente Kühlmittelreinigung
- Xiapu- 2 (Fujian, China)
- 600 MWe
- In Betrieb 2023


Quelle: www.terrapower.com

Terrapower Molten Chloride Fast Reactor MCFR (Bill Gates)

1966-73: Testprojekt, eingestellt wegen nicht beherrschbarer Korrosion


Brennstoff in Salzschmelze gelöst

Januar 2016: 40 M\$ Förderung (5a) U.S. Department of Energy

Southern Company,
Oak Ridge National Laboratory,
Electric Power Research Institute
Vanderbilt University

Im Entwurf Komponententests

Quelle: www.terrapower.com

Gen IV: Molten Salt Reactor

Vorteile (Konzeptabhängig):

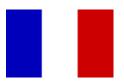
- Verringerte Abfallmengen, größere Brennstoffausnutzung
- Geringeres Brennstoffinventar im Kern
- Konzeptabhängig hohes Sicherheitsniveau möglich

- Hochtemperaturmaterialien
- Steuerung
- Brennstoffchemie, Brennstoffhandling...

Inhalt

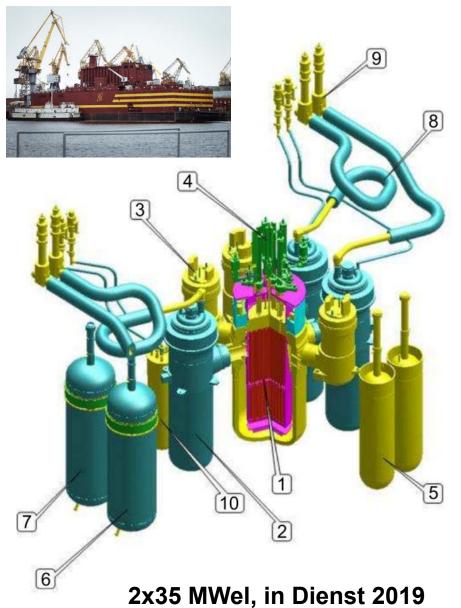
- Kernenergie und Klima
- Generation I III
 - Evolutionär: European Pressurized Water Reactor (EPR)
 - Revolutionär: Advanced Pressurized Water Reacter (AP-1000)

- Flüssigmetallgekühlte Reaktoren (LMR)
- Hochtemperaturreaktoren (HTR)
- Fortgeschrittene Konzepte
- Kleine Modulare Reaktoren (SMR)
- Kernenergie in der Welt
 - Schweiz, Kanada, USA, Japan, Finnland, China, Indien



SMR Projekt Flexblue (Meeresboden)

DCNS (Werft)/ Framatome/ CEA/ EdF (Direction des Constructions Navales)

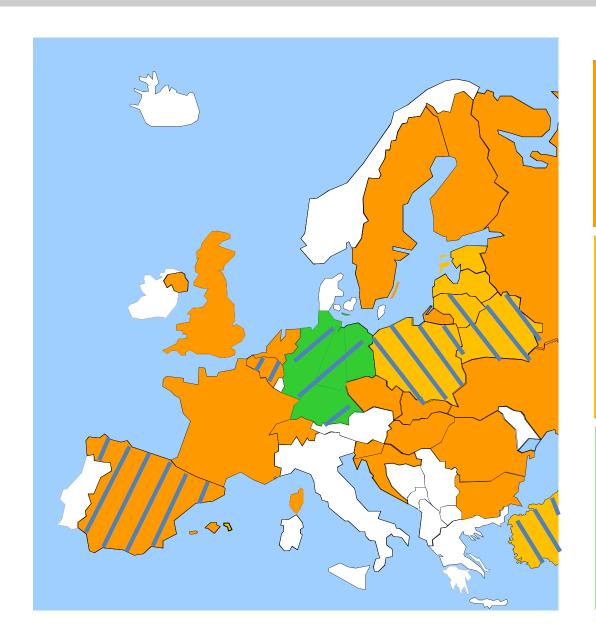

PWR 160 MWel, Gd- basierte Absorber

Schwimmendes Kernkraftwerk Akademik Lomonossov KLT40S

- 1 Reaktor
- 2 Dampferzeuger
- 3 Hauptkühlmittelpumpe
- 4 Steuerstabantriebe
- 5 Notkernkühlung Druckspeicher
- 6 Druckhalter (1. Behälter)
- 7 Druckhalter (2. Behälter)
- 8 Dampfleitungen
- 9 Absperrventile
- 10 Wärmeübertrager Nachkühlsystem

Inhalt

- Kernenergie und Klima
- Generation I III
 - Evolutionär: European Pressurized Water Reactor (EPR)
 - Revolutionär: Advanced Pressurized Water Reacter (AP-1000)

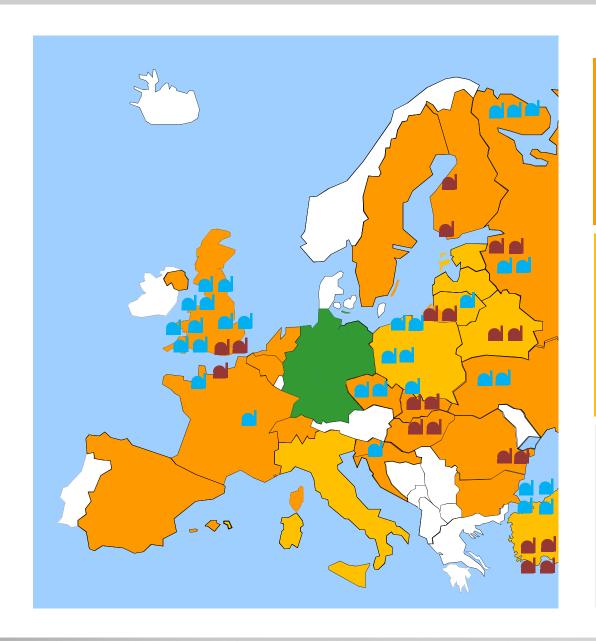


- Flüssigmetallgekühlte Reaktoren (LMR)
- Hochtemperaturreaktoren (HTR)
- Fortgeschrittene Konzepte
- Kleine Modulare Reaktoren (SMR)
- Kernenergie in der Welt
 - EU, Schweiz, Kanada, USA, Finnland, Japan, Indien, China

Kernenergieländer in Europa

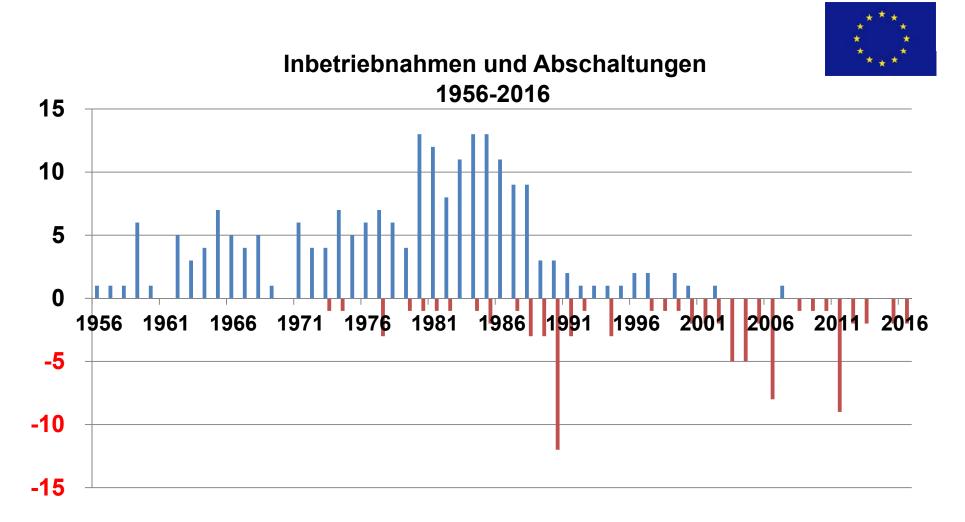
191 Kernkraftwerke In 18 Ländern

(weltweit: 441 in 30 Ländern)


4 Länder mit Einstiegsprogrammen

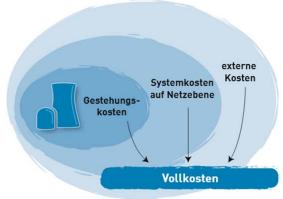
3 Länder mit Ausstiegsprogrammen

Geplante Kernkraftwerksneubauten in Europa

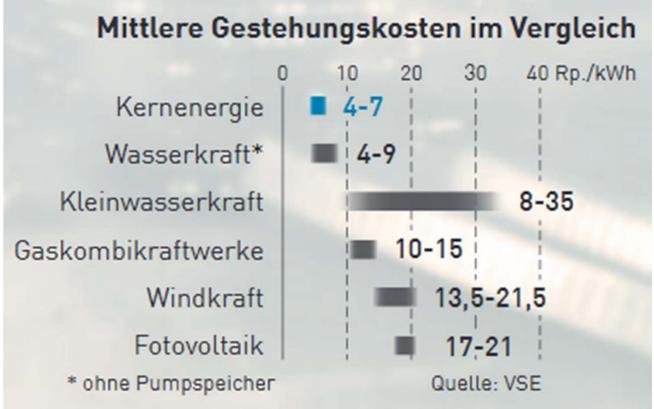

32 Projekte in 10 Ländern

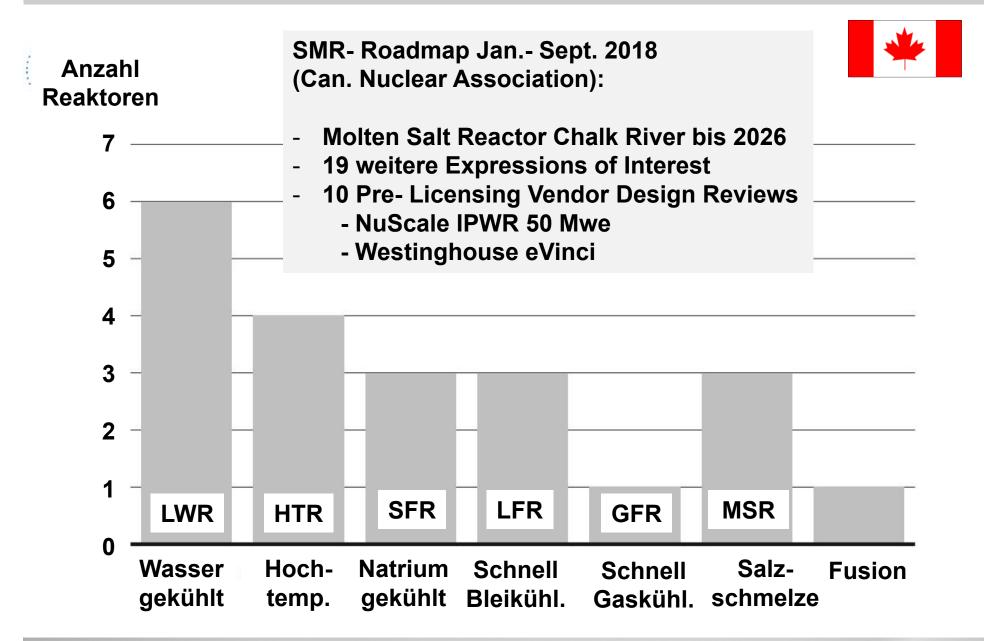
11 Stillegungen Europa 7 Stillegungen Deutschl.

Stilllegung und Abbau von Kernkraftwerken in Deutschland und EU



Stand Juli 2016: 127 KKW In Betrieb → 1/3 der weltweiten nuklearen Flotte

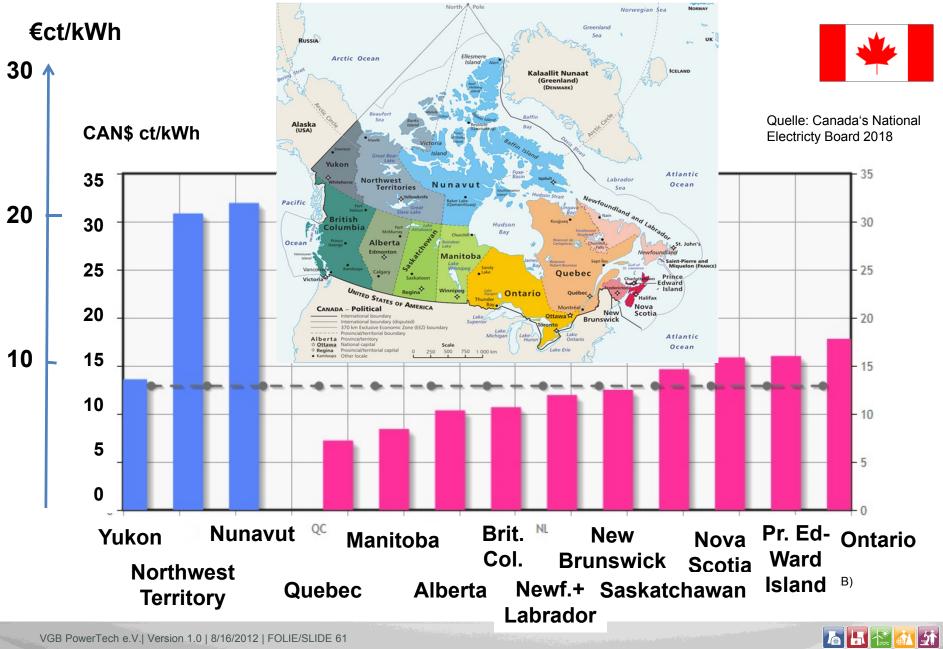

Erzeugungskosten (Beispiel Schweiz 2017)



1 € = 1,15 SFr

Angekündigte Small Modular Reactors (SMR) in Kanada Feb. 2018

Genehmigungsstand Small Modular Reactors in Kanada Feb. 2018


Vendor	Name of design and cooling type	Approximate electrical capacity (MW electrical)	Applied for	Review start date	Status
Terrestrial Energy Inc.	IMSR Integral Molten Salt Reactor	200	Phase 1 Phase 2	Apr-16 Pending summer 2018	Phase 1 complete Service agreement under development
NuScale Power, LLC	NuScale Integral Pressurized Water Reactor	50	Phase 2*	Pending mid-2018	Service agreement under development
Ultra Safe Nuclear Corporation / Global First Power	MMR-5 and MMR-10 High Temperature Gas 5-10	200	Phase 1 Phase 2	Dec-16 Pending summer	Assessment in progress Service agreement
Westinghouse Electric Company, LLC	eVinci Micro Reactor Solid core and heat pipes	Various outputs up to 25 MWe	Phase 2*	To be determined	under amendment Service agreement under development
LeadCold Nuclear Inc.	SEALER Molten Lead	3	Phase 1	Jan-17	Phase 1 on hold at vendor's request
Advanced Reactor Concepts Ltd.	ARC-100 Liquid Sodium	100	Phase 1	Fall 2017	Assessment in progress
URENCO	U-Battery High-Temperature Gas	4	Phase 1	Tentative Spring 2018	Service agreement under development
Moltex Energy	Moltex Energy Stable Salt Reactor Molten Salt	300	Series Phase 1 and 2	Dec-17	Phase 1 assessment in progress
SMR, LLC. (A Holtec International Company)	SMR-160 Pressurized Light Water	160	Phase 1	To be determined	Service agreement under development
StarCore Nuclear	StarCore Module High-Temperature Gas	10	Series Phase 1 and 2	To be determined	Service agreement under development
*Phase 1 objectives will b	pe addressed within the	Phase 2 scope of work.			

Quelle: nucleardrupalfs.s3.amazonaws.com/cnsc_prelicensing_vendor_design_review_february_2018.jpg Data source: Canadian Nuclear Safety Commission (CNSC), February 2018.

Strompreise in Kanada 2017

Licence Extensions in USA Feb. 2018

Laufzeitverlängerung auf 60 Jahre:

- Für ca. 90 Reaktoren erteilt,
- Rest folgt

Laufzeitverlängerung auf 80 Jahre:

 Beschluss zur Einreichung für die ersten zwei Reaktoren (Calvert Cliffs)

"Design Certifications" in Genehmigungsverfahren in USA Feb. 2018

Design	Antragsteller	Status
U.S. EPR	AREVA NP, Inc.	Suspended
U.S. Advanced Pressurized- Water Reactor (US-APWR)	Mitsubishi Heavy Industries, Ltd.	Under Review
ABWR Design Certification Renewal	Toshiba Corporation Power Systems Company	Withdrawn
ABWR Design Certification Renewal	GE-Hitachi Nuclear Energy	Under Review
Advanced Power Reactor 1400 (APR1400)	Korea Electric Power Corporation and Korea Hydro & Nuclear Power Co., Ltd.	Under Review
<u>NuScale</u>	NuScale Power	Under Review

Angekündigte Small Modular Reactors in USA Feb. 2018

SMR Druckwasserreaktoren:

Design Antragsart Antragsteller

NuScale Power Design Certification NuScale Power

BWXT mPower™ Pre-Application BWXT mPower, Inc.

SMR-160 Pre-Application SMR Inventec (Holtec International Co.)

Clinch River Nuclear Site Early Site Permit Tennessee Valley Authority (TVA)

Andere fortgeschrittene Reaktoren (SMR):

Design Antragsteller Technik

Oklo Inc. Compact Fast Reactor

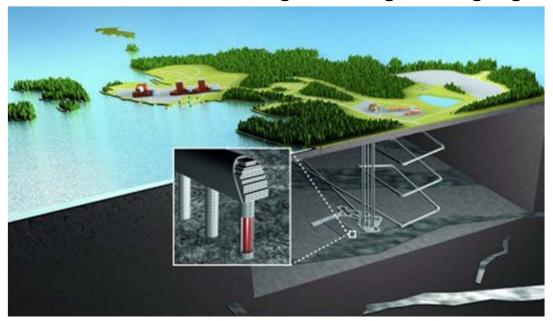
Transatomic Power Molten Salt Reactor

Integral Molten Salt Reactor (IMSR) Terrestrial Energy Molten Salt Reactor

Xe-100 X-Energy Modular High Temperature

Gas-Cooled Reactor

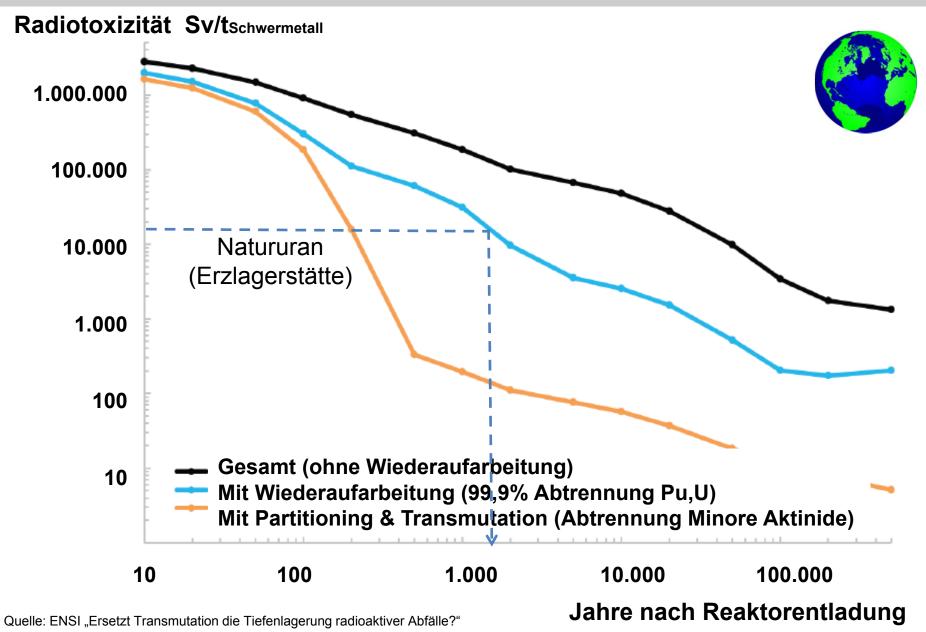
Molten Chloride Fast Reactor TerraPower, LLC Molten Salt Reactor


Finnland: Endlager ONKALO

Weltweit erstes Endlager für Wärme entwickelnde Abfälle aus KKW *

- 2000: Regierungsentscheidung für ein Endlager für verbrauchten Brennstoff
- 2001: Grundsatzentscheidung des Finnischen Parlaments
- 2012: Genehmigungsantrag von Posiva (TVO/FORTUM) für Standort Olkiluoto
- 2015: STUK** Bestätigung der Erfüllung aller Sicherheitskriterien
- 12. November 2015: Errichtungsgenehmigung für 6,500 t verbrauchten Brennstoff*
- Nächste Schritte: Errichtung bis 2020
- Vor Inbetriebnahme: Antrag Betriebsgenehmigung

*: Ausreichend für mehr als 50 a Betrieb von 5 der 6 KKW


** STUK: Finnische Aufsichtsbehörde

Quellen: STUK, 02/2015, WNA 11/2015

Mit Wiederaufarbeitung muss Endlagerung nur 2.000 a "können"

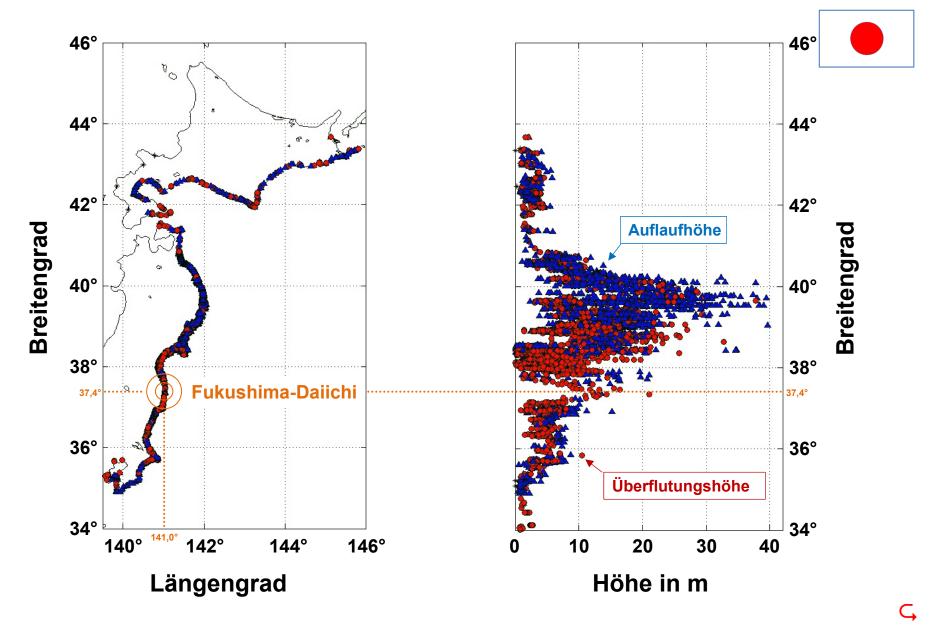
Endlagerprojekte für Wärme entwickelnde Abfälle

Unterschiedliche Gesteinsformationen (Auswahl):

- Forsmark, Schweden (Kristallin, Cu- Behälter)
- Sechs Auswahlstandorte, (Nord-) Schweiz (Ton?)
- Bure, Frankreich (Ton)
- Seversk (Tomsk), Russland (Bergstollen, Zwischenlager?)
- Yucca Mountain,
 Nevada, USA
 (Tuff, 200-450m,
 Erkundung eingestellt,
 Genehmigung
 fortgesetzt)

Fukushima 2017

- Bis heute keine Gesundheitsschäden durch Radioaktivität (WHO)
- Mit sehr hoher Wahrscheinlichkeit auch in Zukunft keine (WHO)
- Unfallkosten bis heute ca. 120 G€ (TEPCO), davon 2/3 Entschädigungen
- Von ca. 160.000 umgesiedelten Personen bisher ca. 84.000 Rückkehrer



- 30km- Zone: Umfangreiche Dekontaminationsarbeiten (bis 3cm Tiefe)
- Ca. Hälfte wieder freigegeben, nach Nordwest ausgedehnt bis ca. 40km
- Dorf litate 2017 eingeschränkt wieder freigegeben
- Von 42 Reaktoren 7 wieder in Betrieb, weitere 19 beantragt

Tohoku Seebeben ► **Tsunami Auftreffbreite**

Analyse historischer Tsunami Daten

► War Fukushima Daiichi ein Restrisikoergeignis?

Datum	Region	Magnitude	Tsunami			
11.03.2011	Japan	M = 9.0	39 m			
04.10.1994	Kuril Islands	M = 8.3	11 m			
12.07.1993	Sea of Japan	M = 7.7	31.7 m			
26.05.1983	Noshiro	M = 7.7	14.5 m			
07.12.1044	Kii Paninsula	M - Q 1	<u> 10 უ</u>			
02.0 Selbst Erdbeben mit Magnituden						
01. um 7.4 können Tsunamis über 10						
07.0 m zur Folge haben!						
15.0 0.1090 Sannku Sonn						
24.12.1854	Nankaido	M = 8.4	28 m			
29.06.1780	Kuril Islands	M = 7.5	12 m			
24.04.1771	Ryukyu Islands	M = 7.4	85 m			
28.10.1707	Japan	M = 8.4	11 m			
31.12.1703	Tokaido-Kashima	M = 8.2	10.5 m			
02.12.1611	Sanriku	M = 8.0	25 m			
20.09.1498	Nankaido	M = 8.6	17 m			
Resultat		M ≈ 7.4	> 10 m			

- ► Analyse Historischer Daten

 16 große Tsunamis mit Wellenhöhen
- **▶** Berechnete Häufigkeit

$$f = \frac{16}{513 \text{ a}} \approx 0.0312 \text{ a}^{-1} \approx \frac{1}{30 \text{ a}}$$

über 10 m in den letzten 513 Jahren.

Alle 30 Jahre trifft ein großer Tsunami eine japanische Küste!

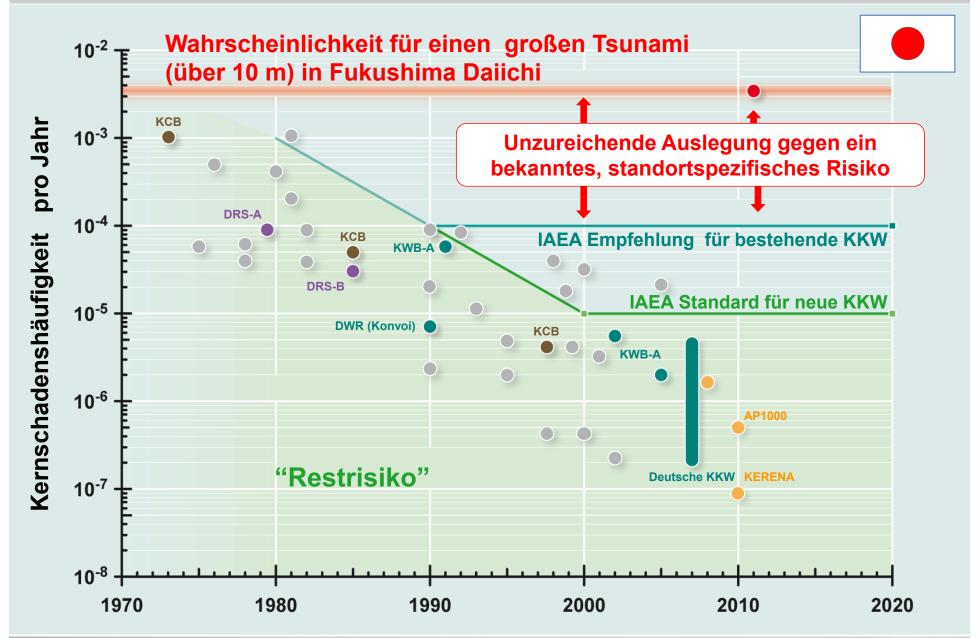
► Ortsspezifische Frequenz

Innerhalb von 100 bis 1 000 Jahren ist ein großer Tsunami an jeder Küste in Japan zu erwarten (Fukushima: 300 bis 400 Jahre.)

► Nein, es war eine FAHRLÄSSIGE Unterschätzung eines hohen spezifischen Risikos!

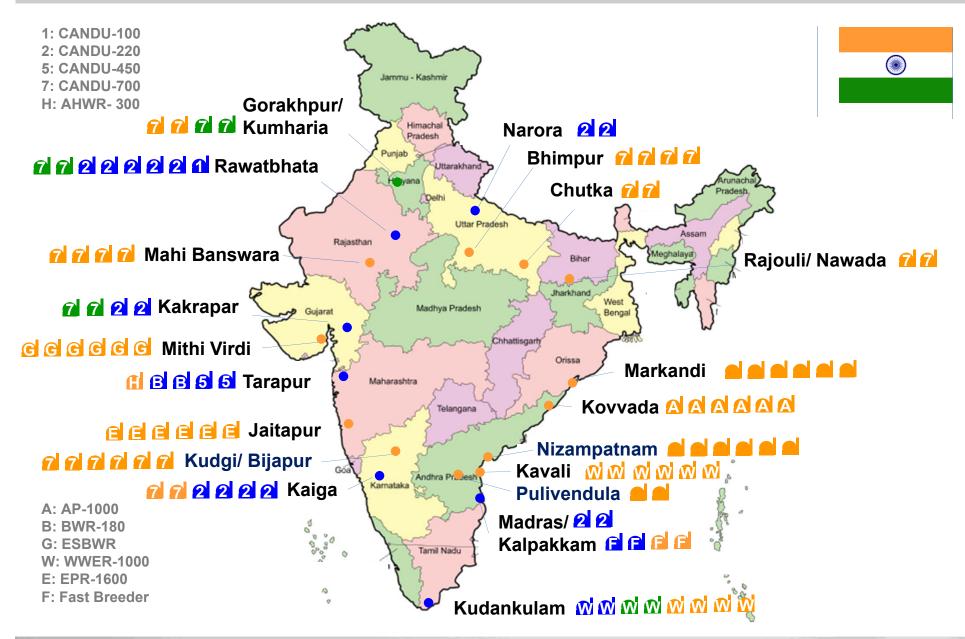
Vergessene Tsunami Warnungen

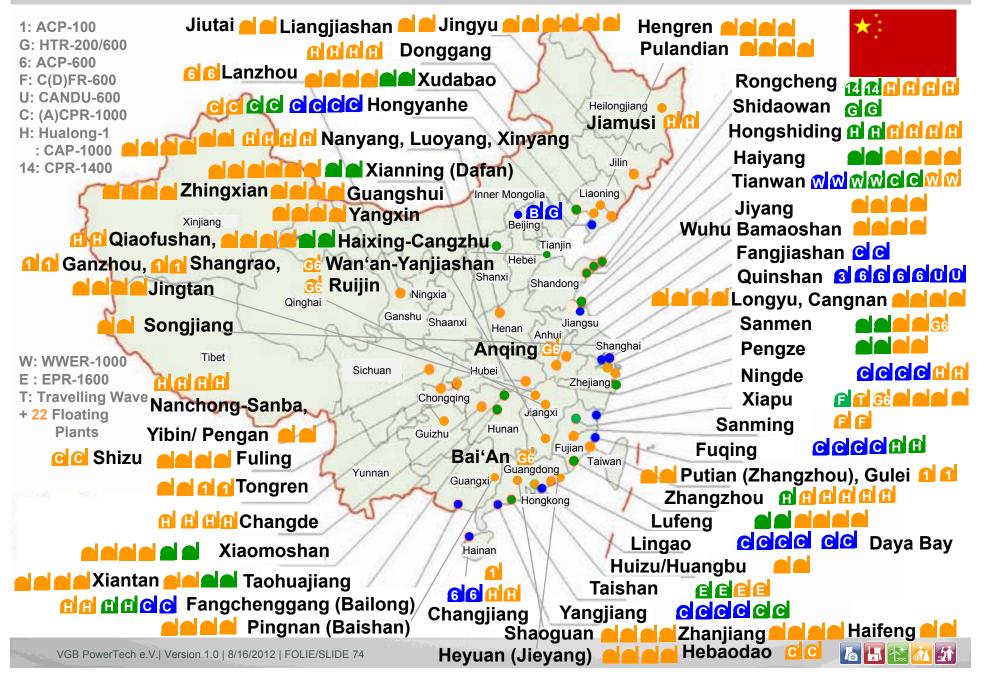
Hunderte von Denksteinen


- "Baut nicht unterhalb dieses Steins!"
- "Bei Erdbeben, hüte Dich vor Tsunamis!"

► Analyse historischer Aufzeichnungen

- 869 Jogan Erdbeben in NO Honshu.
- Kilometerweite Tsunami Überflutungen im Inland nördlich Fukushima Daiichi.
- Wissenschaftliche Veröffentlichungen in den 1980ern.


Ergebnisse Probabilistischer Sicherheitsanalysen


Indien: 24 in Betrieb, 8 im Bau, 63 in Planung (<2035)

China: 39 in Betrieb, 40 im Bau, 228 in Planung (<2035)

Schlussbemerkungen:

- 1. Hochentwickelte Technik, exportfähig
- 2. Betriebsbewährt mit über 12000 Reaktorbetriebsjahren
- 3. Akzeptanz: 90 % der Europäer leben in Staaten mit Kernenergie
- 4. Fukushima war kein Restrisikoereignis, keine Strahlenschäden
- 5. Kernkraftwerke altern nicht wie andere Kraftwerke, Vorzeitiges Abschalten bedeutet gigantische Kapitalvernichtung
- 6. Hochwirtschaftlich wenn technische Lebensdauer erreicht werden kann
- 7. Quasiheimisch
- 8. Klimaneutral

Vielen Dank für Ihre Aufmerksamkeit!

Dr.- Ing. L. Mohrbach VGB PowerTech e.V. Deilbachtal 173 D-45257 Essen

Ludger.Mohrbach@VGB.ORG

Tel.: xx49 201 8128 221

Fax: xx49 201 8128 306

www.vgb.org

